The buoyancy-driven motion of a single skirted bubble or drop rising through a viscous liquid is computationally explored by way of 3d-axisymmetric computations. The Navier-Stokes equations for incompressible two-fluid flow are solved numerically in which the coupled level-set and volume-of-fluid method is used to simulate the deforming bubble/drop boundary and the interface jump conditions on the deforming boundary are enforced through a sharp interface numerical treatment. Dynamic, block structured adaptive grid refinement is employed in order to sufficiently resolve the thin skirts. Results on the sensitivity of the thickness of trailing bubble/drop skirts to the density ratio and viscosity ratio are reported. It is shown that both the density ratio (not the density difference) and the viscosity ratio effect the skirt thickness. Previous theory for predicting skirt thickness can be refined as a result of our calculations. It is also discovered that the formation of thin skirts for bubbles and drops have little effect on the rise velocity. In other words, the measured Re number for cases without skirt formation have almost the same values for Re as cases with a thin skirt.

1.
D.
Bhaga
, “
Bubbles in viscous liquids: Shapes, wakes and velocities
,” Ph.D. dissertation (
McGill University
,
1976
).
2.
A.
Gupta
and
R.
Kumar
, “
Lattice Boltzmann simulation to study multiple bubble dynamics
,”
Int. J. Heat Mass Transfer
51
,
5192
5203
(
2008
).
3.
M.
Ohta
,
T.
Imura
,
Y.
Yoshida
, and
M.
Sussman
, “
A computational study of the effect of initial bubble conditions on the motion of a gas bubble rising in viscous liquids
,”
Int. J. Multiphase Flow
31
,
223
237
(
2005
).
4.
M.
Sussman
,
K. M.
Smith
,
M. Y.
Hussaini
,
M.
Ohta
, and
R.
Zhi-Wei
, “
A sharp interface method for incompressible two-phase flows
,”
J. Comp. Phys.
221
(
2
),
469
505
(
2007
).
5.
J. J.
Thomson
and
H. F.
Newall
, “
On the formation of vortex rings by drops falling into liquids, and some allied phenomena
,”
Proc. R. Soc. London
39
,
417
436
(
1885
).
6.
P. D.
Shoemaker
and
L. E.
Marc De Chazal
, “
Dimpled and skirted liquid drops moving through viscous liquid media
,”
Chem. Eng. Sci.
24
,
795
797
(
1969
).
7.
T.
Wairegi
, “
The mechanics of large bubbles and drops moving through extended liquid media
,” Ph.D. dissertation (
McGill University
,
1974
).
8.
T.
Wairegi
and
J. R.
Grace
, “
The behaviour of large drops in immiscible liquids
,”
Int. J. Multiphase Flow
3
,
67
77
(
1976
).
9.
H.
Angelino
, “
Hydrodynamique des grosses bulles dans les liquides visqueux
,”
Chem. Eng. Sci.
21
,
541
550
(
1966
).
10.
W. G.
Davenport
,
F. D.
Richardson
, and
A. V.
Bradshaw
, “
Spherical cap bubbles in low density liquids
,”
Chem. Eng. Sci.
22
,
1221
1235
(
1967
).
11.
R. I. L.
Guthrie
and
A. V.
Bradshaw
, “
The stability of gas envelopes trailed behind large spherical cap bubbles rising through viscous liquids
,”
Chem. Eng. Sci.
24
,
913
917
(
1969
).
12.
R. I. L.
Guthrie
and
A. V.
Bradshaw
, “
Spherical capped gas bubbles rising in aqueous media
,”
Chem. Eng. Sci.
28
,
191
203
(
1973
).
13.
P. H.
Calderbank
,
D. S. L.
Johnson
, and
J.
Loudon
, “
Mechanics and mass transfer of single bubbles in free rise through some newtonian and non-newtonian liquids
,”
Chem. Eng. Sci.
25
,
235
256
(
1970
).
14.
P. P.
Wegener
,
R. E.
Sundell
, and
J.-Y.
Parlange
, “
Spherical cap bubbles rising in liquids
,”
Z. Flugwiss.
19
,
347
352
(
1971
).
15.
J. G.
Hnat
and
J. D.
Buckmaster
, “
Spherical cap bubbles and skirt formation
,”
Phys. Fluids
19
,
182
194
(
1976
).
16.
M.
Kang
,
R.
Fedkiw
, and
X.-D.
Liu
, “
A boundary condition capturing method for multiphase incompressible flow
,”
J. Sci. Comput.
15
,
323
360
(
2000
).
17.
P. A.
Stewart
,
N.
Lay
,
M.
Sussman
, and
M.
Ohta
, “
An improved sharp interface method for viscoelastic and viscous two-phase flows
,”
J. Sci. Comput.
35
(
1
),
43
61
(
2008
).
18.
S. O.
Unverdi
and
G.
Tryggvason
, “
A front-tracking method for viscous, incompressible, multi-fluid flows
,”
J. Comput. Phys.
100
,
25
37
(
1992
).
19.
M.
Sussman
and
P.
Smereka
, “
Axisymmetric free boundary problems
,”
J. Fluid Mech.
341
,
269
294
(
1997
).
20.
M.
Ohta
and
M.
Suzuki
, “
Numerical analysis of dispersed drop behavior in the pulsed sieve-plate extraction column
,”
Int. Commun. Heat Mass Transfer
25
,
521
530
(
1998
).
21.
M.
Ohta
,
S.
Haranaka
,
Y.
Yoshida
, and
M.
Sussman
, “
Three dimensional simulation of the motion of a gas bubble rising in viscous liquid
,”
J. Chem. Eng. Jpn.
37
(
8
),
968
975
(
2003
).
22.
T.
Inamuro
,
T.
Ogata
, and
F.
Ogino
, “
Numerical simulation of bubble flows by the lattice Boltzmann method
,”
FGCS, Future Gener. Comput. Syst.
20
,
959
964
(
2004
).
23.
M.
van Sint Annaland
,
N. G.
Deen
, and
J. A. M.
Kuipers
, “
Numerical simulation of gas bubbles behaviour using a three-dimensional volume of fluid method
,”
Chem. Eng. Sci.
60
,
2999
3011
(
2005
).
24.
M.
van Sint Annaland
,
W.
Dijkhuizen
,
N. G.
Deen
, and
J. A. M.
Kuipers
, “
Numerical simulation of behavior of gas bubbles using a 3-d front-tracking method
,”
AIChE J.
52
,
99
110
(
2006
).
25.
T.
Bonometti
and
J.
Magnaudet
, “
An interface-capturing method for incompressible two-phase flows. Validation and application to bubble dynamics
,”
Int. J. Multiphase Flow
33
,
109
133
(
2007
).
26.
J.
Hua
and
J.
Lou
, “
Numerical simulation of bubble rising in viscous liquid
,”
J. Comput. Phys.
222
,
769
795
(
2007
).
27.
J.
Hua
,
J. F.
Stene
, and
P.
Lin
, “
Numerical simulation of 3d bubbles rising in viscous liquids using a front tracking method
,”
J. Comput. Phys.
227
,
3358
3382
(
2008
).
28.
Z.
Yu
and
L.-S.
Fan
, “
Direct simulation of the buoyant rise of bubbles in infinite liquid using level set method
,”
Can. J. Chem. Eng.
86
,
267
275
(
2008
).
29.
Z.
Yu
and
L.-S.
Fan
, “
An interaction potential based lattice Boltzmann method with adaptive mesh refinement (amr) for two-phase flow simulation
,”
J. Comput. Phys.
228
,
6456
6478
(
2009
).
30.
Z.
Wang
,
J.
Yang
,
B.
Koo
, and
F.
Stern
, “
A coupled level set and volume-of-fluid method for sharp interface simulation of plunging breaking waves
,”
Int. J. Multiphase Flow
35
,
227
246
(
2009
).
31.
S.
Hysing
,
S.
Turek
,
D.
Kuzmin
,
N.
Parolini
,
S.
Ganesan
E.
Burman
, and
L.
Tobiska
, “
Quantitative benchmark computations of two-dimensional bubble dynamics
,”
Int. J. Numer. Methods Fluids
60
,
1259
1288
(
2009
).
32.
L.
Amaya-Bower
and
T.
Lee
, “
Single bubble rising dynamics for moderate Reynolds number using lattice Boltzmann method
,”
Comput. Fluids
39
,
1191
1207
(
2010
).
33.
H.
Farhat
,
W.
Choi
, and
J. S.
Lee
, “
Migrating multi-block lattice Boltzmann model for immiscible mixtures: 3d algorithm development and validation
,”
Comput. Fluids
39
,
1284
1295
(
2010
).
34.
G.
Pianet
,
S.
Vincent
,
J.
Leboi
,
J. P.
Caltagirone
, and
M.
Anderhuber
, “
Simulating compressible gas bubbles with a smooth volume tracking 1-fluid method
,”
Int. J. Multiphase Flow
36
,
273
283
(
2010
).
35.
R. N.
Krishnan
,
S.
Vivek
,
D.
Chatterjee
, and
S. K.
Das
, “
Performance of numerical schemes in the simulation of two-phase free flows and wall bounded mini channel flows
,”
Chem. Eng. Sci.
65
,
5117
5136
(
2010
).
36.
D.
Bhaga
and
M. E.
Weber
, “
Bubbles in viscous liquids: Shapes, wakes and velocities
,”
J. Fluid Mech.
105
,
61
85
(
1981
).
37.
Y. C.
Chang
,
T. Y.
Hou
,
B.
Merriman
, and
S.
Osher
, “
Eulerian capturing methods based on a level set formulation for incompressible fluid interfaces
,”
J. Comput. Phys.
124
,
449
464
(
1996
).
38.
M.
Raessi
and
H.
Pitsch
, “
Consistent mass and momentum transport for simulating incompressible interfacial flows with large density ratios using the level set method
,”
Comput. Fluids
63
,
70
81
(
2012
).
39.
M.
Sussman
and
E. G.
Puckett
, “
A coupled level set and volume of fluid method for computing 3D and axisymmetric incompressible two-phase flows
,”
J. Comp. Phys.
162
,
301
337
(
2000
).
40.
M.
Sussman
, “
A second order coupled levelset and volume of fluid method for computing growth and collapse of vapor bubbles
,”
J. Comput. Phys.
187
,
110
136
(
2003
).
41.
M.
Sussman
,
P.
Smereka
, and
S. J.
Osher
, “
A level set approach for computing solutions to incompressible two-phase flow
,”
J. Comput. Phys.
114
,
146
159
(
1994
).
42.
M.
Sussman
, “
A parallelized, adaptive algorithm for multiphase flows in general geometries
,”
Comput. Struct.
83
,
435
444
(
2005
).
43.
O.
Tatebe
, “
The multigrid preconditioned conjugate gradient method
,” in
Proceedings of the 6th Copper Mountain Conference on Multigrid Methods, NASA conference publication 3224, part 2, Copper Mountain, CO, 4–9 April 1993
, edited by
N. D.
Melson
,
T. A.
Manteuffel
, and
S. F.
McCormick
(
NASA
), pp.
621
634
.
44.
J. R.
Grace
,
T.
Wairegi
, and
T. H.
Nguyen
, “
Shapes and velocities of single drops and bubbles moving freely through immiscible liquids
,”
Trans. Inst. Chem. Eng.
54
,
167
(
1976
).
45.
M.
Sussman
,
A.
Almgren
,
J.
Bell
,
P.
Colella
,
L.
Howell
, and
M.
Welcome
, “
An adaptive level set approach for incompressible two-phase flows
,”
J. Comput. Phys.
148
,
81
124
(
1999
).
46.
M.
Ohta
,
D.
Kikuchi
,
Y.
Yoshida
, and
M.
Sussman
, “
Robust numerical analysis of the dynamic bubble formation process in a viscous liquid
,”
Int. J. Multiphase Flow
37
,
1059
1071
(
2011
).
47.
M.
Ohta
,
S.
Yamaguchi
,
Y.
Yoshida
, and
M.
Sussman
, “
The sensitivity of drop motion due to the density and viscosity ratio
,”
Phys. Fluids
22
,
072102
(
2010
).
48.
M.
Jemison
,
E.
Loch
,
M.
Sussman
,
M.
Shashkov
,
M.
Arienti
,
M.
Ohta
, and
Y.
Wang
, “
A coupled level set-moment of fluid method for incompressible two-phase flows
,”
J. Sci. Comput.
(to be published).
You do not currently have access to this content.