This paper experimentally investigates the effects of microhole eccentricity on the slip lengths of Stokes flow in microchannels with the bottom wall made of microhole arrays. The wettability of such microhole structures fabricated by the replica molding of polydimethylsiloxane is first analyzed measuring both static and dynamic contact angles. Subsequently, the drag reduction performance of the microchannels with such hydrophobic microhole surfaces is evaluated. The results indicate that the impact of microhole eccentricity on drag reduction performance correlates well with the contact angle hysteresis rather than with the static contact angle. Furthermore, microhole arrays with large normalized width and zero eccentricity show the minimum contact angle hysteresis of 18.7°. In these microchannels, the maximum percentage increase in the relative velocity is 39% corresponding to a slip length of 2.49 μm. For the same normalized width, increasing the normalized eccentricity to 2.6 increases the contact angle hysteresis to 36.5° that eventually reduces the percentage increase in relative velocity and slip length down to 16% and 0.91 μm, respectively. The obtained results are in qualitative agreement with the existing theoretical and numerical models. These findings provide additional insights in the design and fabrication of efficient micropatterned channels for reducing the flow resistance, and leave open questions for theoreticians to further investigate in this field.

1.
J. R.
Philip
, “
Flows satisfying mixed no-slip and no-shear conditions
,”
Z. Angew. Math. Phys.
23
,
353
372
(
1972
).
2.
J. R.
Philip
, “
Integral properties of flows satisfying mixed no-slip and no-shear conditions
,”
Z. Angew. Math. Phys.
23
,
960
968
(
1972
).
3.
E.
Lauga
and
H. A.
Stone
, “
Effective slip in pressure-driven Stokes flow
,”
J. Fluid Mech.
489
,
55
77
(
2003
).
4.
J.
Ou
,
B.
Perot
, and
J. P.
Rothstein
, “
Laminar drag reduction in microchannels using ultrahydrophobic surfaces
,”
Phys. Fluids
16
,
4635
4643
(
2004
).
5.
P.
Joseph
,
C.
Cottin-Bizonne
,
J. M.
Benoit
,
C.
Ybert
,
C.
Journet
,
P.
Tabeling
, and
L.
Bocquet
, “
Slippage of water past superhydrophobic carbon nanotube forests in microchannels
,”
Phys. Rev. Lett.
97
,
156104
(
2006
).
6.
R.
Truesdell
,
A.
Mammoli
,
P.
Vorobieff
,
F.
van Swol
, and
C. J.
Brinker
, “
Drag reduction on a patterned superhydrophobic surface
,”
Phys. Rev. Lett.
97
,
044504
(
2006
).
7.
N. V.
Priezjev
,
A. A.
Darhuber
, and
S. M.
Troian
, “
Slip behavior in liquid films on surfaces of patterned wettability: Comparison between continuum and molecular dynamics simulations
,”
Phys. Rev. E
71
,
041608
(
2005
).
8.
B.
Woolford
,
D.
Maynes
, and
B.
Webb
, “
Liquid flow through microchannels with grooved walls under wetting and superhydrophobic conditions
,”
Microfluid. Nanofluid.
7
,
121
135
(
2009
).
9.
C.
Teo
and
B.
Khoo
, “
Analysis of Stokes flow in microchannels with superhydrophobic surfaces containing a periodic array of micro-grooves
,”
Microfluid. Nanofluid.
7
,
353
382
(
2009
).
10.
K.
Watanabe
,
Y.
Udagawa
, and
H.
Udagawa
, “
Drag reduction of Newtonian fluid in a circular pipe with a highly water-repellent wall
,”
J. Fluid Mech.
381
,
225
238
(
1999
).
11.
E.
Lauga
,
M. P.
Brenner
, and
H. A.
Stone
, “
Microfluidics: The no-slip boundary condition
,” in
Handbook of Experimental Fluid Dynamics
, edited by
J.
Foss
,
C.
Tropea
, and
A. L.
Yarin
(
Springer
,
2007
), Chap. 19, pp.
1219
1240
.
12.
R. S.
Voronov
,
D. V.
Papavassiliou
, and
L. L.
Lee
, “
Review of fluid slip over superhydrophobic surfaces and its dependence on the contact angle
,”
Ind. Eng. Chem. Res.
47
,
2455
2477
(
2008
).
13.
J. P.
Rothstein
, “
Slip on superhydrophobic surfaces
,”
Annu. Rev. Fluid Mech.
42
,
89
109
(
2010
).
14.
O. I.
Vinogradova
and
A. V.
Belyaev
, “
Wetting, roughness and flow boundary conditions
,”
J. Phys.: Condens. Matter
23
,
184104
(
2011
).
15.
A.
Cassie
and
S.
Baxter
, “
Wettability of porous surfaces
,”
Trans. Faraday Soc.
40
,
546
551
(
1944
).
16.
R.
Wenzel
, “
Resistance of solid surfaces to wetting by water
,”
Ind. Eng. Chem.
28
,
988
994
(
1936
).
17.
N.
Kashaninejad
,
W. K.
Chan
, and
N.-T.
Nguyen
, “
Eccentricity effect of micropatterned surface on contact angle
,”
Langmuir
28
,
4793
4799
(
2012
).
18.
M. A.
Samaha
,
H. V.
Tafreshi
, and
M.
Gad-el-Hak
, “
Modeling drag reduction and meniscus stability of superhydrophobic surfaces comprised of random roughness
,”
Phys. Fluids
23
,
012001
1
012001
8
(
2011
).
19.
A. V.
Belyaev
and
O. I.
Vinogradova
, “
Effective slip in pressure-driven flow past super-hydrophobic stripes
,”
J. Fluid Mech.
652
,
489
499
(
2010
).
20.
Y. P.
Cheng
,
C. J.
Teo
, and
B. C.
Khoo
, “
Microchannel flows with superhydrophobic surfaces: Effects of Reynolds number and pattern width to channel height ratio
,”
Phys. Fluids
21
,
122004
1
122004
12
(
2009
).
21.
C.
Ybert
,
C.
Barentin
,
C.
Cottin-Bizonne
,
P.
Joseph
, and
L.
Bocquet
, “
Achieving large slip with superhydrophobic surfaces: Scaling laws for generic geometries
,”
Phys. Fluids
19
,
123601
1
123601
10
(
2007
).
22.
N.
Anantharaju
,
M. V.
Panchagnula
,
S.
Vedantam
,
S.
Neti
, and
S.
Tatic-Lucic
, “
Effect of three-phase contact line topology on dynamic contact angles on heterogeneous surfaces
,”
Langmuir
23
,
11673
11676
(
2007
).
23.
D.
Öner
and
T. J.
McCarthy
, “
Ultrahydrophobic surfaces. Effects of topography length scales on wettability
,”
Langmuir
16
,
7777
7782
(
2000
).
24.
M. C.
Salvadori
,
M.
Cattani
,
M. R. S.
Oliveira
,
F. S.
Teixeira
, and
I. G.
Brown
, “
Design and fabrication of superhydrophobic surfaces formed of microcavities
,”
Appl. Phys. Lett.
96
,
074101
1
074101
3
(
2010
).
25.
C.
Liu
, “
Rapid fabrication of microfluidic chip with three-dimensional structures using natural lotus leaf template
,”
Microfluid. Nanofluid.
9
,
923
931
(
2010
).
26.
M. E.
Steinke
and
S. G.
Kandlikar
, “
Single-phase liquid friction factors in microchannels
,”
Int. J. Therm. Sci.
45
,
1073
1083
(
2006
).
27.
N.
Kashaninejad
,
W. K.
Chan
, and
N.-T.
Nguyen
, “
Fluid mechanics of flow through rectangular hydrophobic microchannels
,” in
ASME Conference Proceedings
(
2011
), pp.
647
655
.
28.
M. K.
Koopaee
,
M.
Jahanmiri
, and
H. M.
Zadeh
, “
Numerical investigation of drag reduction in microchannels with superhydrophobic walls consist of aligned and staggered microposts
,” in
International Proceedings of Computer Science and Information Technology
(
2012
), Vol. 33, pp.
104
109
.
You do not currently have access to this content.