We present lattice Boltzmann simulations of rarefied flows driven by pressure drops along two-dimensional microchannels. Rarefied effects lead to non-zero cross-channel velocities, and nonlinear variations in the pressure along the channel. Both effects are absent in flows driven by uniform body forces. We obtain second-order accuracy for the two components of velocity and the pressure relative to asymptotic solutions of the compressible Navier–Stokes equations with slip boundary conditions. Since the common lattice Boltzmann formulations cannot capture Knudsen boundary layers, we replace the usual discrete analogs of the specular and diffuse reflection conditions from continuous kinetic theory with a moment-based implementation of the first-order Navier–Maxwell slip boundary conditions that relate the tangential velocity to the strain rate at the boundary. We use these conditions to solve for the unknown distribution functions that propagate into the domain across the boundary. We achieve second-order accuracy by reformulating these conditions for the second set of distribution functions that arise in the derivation of the lattice Boltzmann method by an integration along characteristics. Our moment formalism is also valuable for analysing the existing boundary conditions. It reveals the origin of numerical slip in the bounce-back and other common boundary conditions that impose conditions on the higher moments, not on the local tangential velocity itself.

1.
C.-M.
Ho
and
Y.-C.
Tai
, “
Micro-electro-mechanical-systems (MEMS) and fluid flows
,”
Annu. Rev. Fluid Mech.
30
,
579
(
1998
).
2.
M.
Gad-el Hak
, “
The fluid mechanics of microdevices
,”
ASME J. Fluids Eng.
121
,
5
(
1999
).
3.
G.
Karniadakis
,
A.
Beskok
, and
N.
Aluru
,
Microflows and Nanoflows
(
Springer
,
New York
,
2005
).
4.
F.
Sharipov
and
V.
Seleznev
, “
Data on internal rarefied gas flows
,”
J. Phys. Chem. Ref. Data
27
,
657
(
1998
).
5.
M. N.
Kogan
, “
Kinetic theory in aerothermodynamics
,”
Prog. Aerosp. Sci.
29
,
271
(
1992
).
6.
Y.
Sone
,
Kinetic Theory and Fluid Dynamics
(
Birkhäuser
,
Boston
,
2002
).
7.
N. G.
Hadjiconstantinou
, “
The limits of Navier–Stokes theory and kinetic extensions for describing small-scale gaseous hydrodynamics
,”
Phys. Fluids
18
,
111301
(
2006
).
8.
S.
Chapman
and
T. G.
Cowling
,
The Mathematical Theory of Non-Uniform Gases
, 3rd ed. (
Cambridge University Press
,
Cambridge
,
1970
).
9.
C.
Cercignani
,
The Boltzmann Equation and its Applications
(
Springer
,
New York
,
1988
).
10.
C.
Cercignani
,
Rarefied Gas Dynamics: From Basic Concepts to Actual Calculations
(
Cambridge University Press
,
Cambridge
,
2000
).
11.
J. H.
Ferziger
and
H. G.
Kaper
,
Mathematical Theory of Transport Processes in Gases
(
North-Holland
,
Amsterdam
,
1972
).
12.
J. C.
Maxwell
, “
On stresses in rarified gases arising from inequalities of temperature
,”
Philos. Trans. R. Soc. London
170
,
231
(
1879
).
13.
H.
Struchtrup
,
Macroscopic Transport Equations for Rarefied Gas Flows
(
Springer
,
Berlin/New York
,
2005
).
14.
I. N.
Ivchenko
,
S. K.
Loyalka
, and
R. V.
Tompson
, Jr.
,
Analytical Methods for Problems of Molecular Transport
(
Springer
,
Dordrecht
,
2007
).
15.
T. I.
Gombosi
,
Gaskinetic Theory
(
Cambridge University Press
,
Cambridge
,
1994
).
16.
Y. H.
Qian
,
D.
d'Humières
, and
P.
Lallemand
, “
Lattice BGK models for the Navier–Stokes equation
,”
Europhys. Lett.
17
,
479
(
1992
).
17.
S.
Ansumali
and
I. V.
Karlin
, “
Kinetic boundary conditions in the lattice Boltzmann method
,”
Phys. Rev. E
66
,
026311
(
2002
).
18.
Y.
Zhang
,
R.
Qin
,
Y.
Sun
,
R.
Barber
, and
D.
Emerson
, “
Gas flow in microchannels – A lattice Boltzmann method approach
,”
J. Stat. Phys.
121
,
257
(
2005
).
19.
X.
Nie
,
G. D.
Doolen
, and
S.
Chen
, “
Lattice-Boltzmann simulations of fluid flows in MEMS
,”
J. Stat. Phys.
107
,
279
(
2002
).
20.
C. Y.
Lim
,
C.
Shu
,
X. D.
Niu
, and
Y. T.
Chew
, “
Application of lattice Boltzmann method to simulate microchannel flows
,”
Phys. Fluids
14
,
2299
(
2002
).
21.
T.
Lee
and
C.-L.
Lin
, “
Rarefaction and compressibility effects of the lattice-Boltzmann-equation method in a gas microchannel
,”
Phys. Rev. E
71
,
046706
(
2005
).
22.
G. H.
Tang
,
W. Q.
Tao
, and
Y. L.
He
, “
Lattice Boltzmann method for gaseous microflows using kinetic theory boundary conditions
,”
Phys. Fluids
17
,
058101
(
2005
).
23.
S.
Succi
, “
Mesoscopic modeling of slip motion at fluid-solid interfaces with heterogeneous catalysis
,”
Phys. Rev. Lett.
89
,
064502
(
2002
).
24.
M.
Sbragaglia
and
S.
Succi
, “
Analytical calculation of slip flow in lattice Boltzmann models with kinetic boundary conditions
,”
Phys. Fluids
17
,
093602
(
2005
).
25.
F.
Verhaeghe
,
L.-S.
Luo
, and
B.
Blanpain
, “
Lattice Boltzmann modeling of microchannel flow in slip flow regime
,”
J. Comput. Phys.
228
,
147
(
2009
).
26.
X. Y.
He
,
Q. S.
Zou
,
L. S.
Luo
, and
M.
Dembo
, “
Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model
,”
J. Stat. Phys.
87
,
115
(
1997
).
27.
S.
Bennett
, “
A lattice Boltzmann model for diffusion of binary gas mixtures
,” Ph.D. dissertation (
University of Cambridge
,
2010
), see also at http://www.dspace.cam.ac.uk/handle/1810/226851.
28.
S.
Bennett
,
P.
Asinari
, and
P. J.
Dellar
, “
A lattice Boltzmann model for diffusion of binary gas mixtures that includes diffusion slip
,”
Int. J. Numer. Methods Fluids
69
,
171
(
2012
).
29.
Y.-H.
Zhang
,
X.-J.
Gu
,
R. W.
Barber
, and
D. R.
Emerson
, “
Capturing Knudsen layer phenomena using a lattice Boltzmann model
,”
Phys. Rev. E
74
,
046704
(
2006
).
30.
S. H.
Kim
,
H.
Pitsch
, and
I. D.
Boyd
, “
Slip velocity and Knudsen layer in the lattice Boltzmann method for microscale flows
,”
Phys. Rev. E
77
,
026704
(
2008
).
31.
C. R.
Lilley
and
J. E.
Sader
, “
Velocity profile in the Knudsen layer according to the Boltzmann equation
,”
Proc. R. Soc. London, Ser. A
464
,
2015
(
2008
).
32.
P. L.
Bhatnagar
,
E. P.
Gross
, and
M.
Krook
, “
A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component system
,”
Phys. Rev.
94
,
511
(
1954
).
33.
I.
Ginzbourg
and
M. P.
Adler
, “
Boundary flow condition analysis for the three-dimensional lattice Boltzmann model
,”
J. Phys. II France
4
,
191
(
1994
).
34.
C.
Shen
,
D. B.
Tian
,
C.
Xie
, and
J.
Fan
, “
Examination of the LBM in simulation of microchannel flow in transitional regime
,”
Microscale Thermophys. Eng.
8
,
423
(
2004
).
35.
H. A.
Kramers
, “
On the behaviour of a gas near a wall
,”
Nuovo Cimento
6
(
Suppl. 2
),
297
(
1949
).
36.
M. M. R.
Williams
, “
A review of the rarefied gas dynamics theory associated with some classical problems in flow and heat transfer
,”
Z. Angew. Math. Phys.
52
,
500
(
2001
).
37.
P.
Welander
, “
On the temperature jump in a rarefied gas
,”
Ark. Fys.
7
,
507
(
1954
).
38.
C.
Cercignani
and
F.
Sernagiotto
, “
Rayleigh's problem at low Mach numbers according to kinetic theory
,” in
Rarefied Gas Dynamics
, edited by
J. H.
de Leeuw
(
Academic
,
New York
,
1965
), Vol.
1
of Proceedings of the Fourth International Symposium held at the Institute for Aerospace Studies, Toronto, 1964, pp.
332
353
.
39.
S.
Loyalka
, “
Velocity profile in the Knudsen layer for the Kramer's problem
,”
Phys. Fluids
18
,
1666
(
1975
).
40.
S.
Albertoni
,
C.
Cercignani
, and
L.
Gotusso
, “
Numerical evaluation of the slip coefficient
,”
Phys. Fluids
6
,
993
(
1963
).
41.
Y.
Sone
,
C.
Bardos
,
F.
Golse
, and
H.
Sugimoto
, “
Asymptotic theory of the Boltzmann system, for a steady flow of a slightly rarefied gas with a finite Mach number: General theory
,”
Eur. J. Mech. B. Fluids
19
,
325
(
2000
).
42.
H.
Grad
, “
Singular and non-uniform limits of solutions of the Boltzmann equation
,” in
SIAM-AMS Proc.
(
American Mathematical Society
,
Providence, RI
,
1967
), Vol.
1
, pp.
269
308
.
43.
D. A.
Lockerby
,
J. M.
Reese
,
D. R.
Emerson
, and
R. W.
Barber
, “
Velocity boundary condition at solid walls in rarefied gas calculations
,”
Phys. Rev. E
70
,
017303
(
2004
).
44.
C. L. M. H.
Navier
, “
Mémoire sur les lois du mouvement des fluides
,”
Mémoires de l'Académie Royale des Sciences de l'Institut de France
VI
,
389
(
1823
).
45.
E.
Lauga
,
M. P.
Brenner
, and
H. A.
Stone
, “
Microfluidics: The no-slip boundary condition
,” in
Springer Handbook of Experimental Fluid Mechanics
, edited by
C.
Tropea
,
A. L.
Yarin
, and
J. F.
Foss
(
Springer
,
Berlin, Heidelberg
,
2007
), pp.
1219
1240
;
46.
E.
Arkilic
,
M.
Schmidt
, and
K.
Breuer
, “
Gaseous slip flow in long microchannels
,”
J. Microelectromech. Syst.
6
,
167
(
1997
).
47.
X.
He
and
L.-S.
Luo
, “
Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation
,”
Phys. Rev. E
56
,
6811
(
1997
).
48.
X.
Shan
and
X.
He
, “
Discretization of the velocity space in the solution of the Boltzmann equation
,”
Phys. Rev. Lett.
80
,
65
(
1998
).
49.
D. R.
Noble
,
S.
Chen
,
J. H.
Georgiadis
, and
R. O.
Buckius
, “
A consistent hydrodynamic boundary condition for the lattice Boltzmann method
,”
Phys. Fluids
7
,
203
(
1995
).
50.
P. J.
Dellar
, “
Bulk and shear viscosities in lattice Boltzmann equations
,”
Phys. Rev. E
64
,
031203
(
2001
).
51.
X.
He
,
X.
Shan
, and
G. D.
Doolen
, “
Discrete Boltzmann equation model for nonideal gases
,”
Phys. Rev. E
57
,
R13
(
1998
).
52.
G.
Strang
, “
On the construction and comparison of difference schemes
,”
SIAM J. Numer. Anal.
5
,
506
(
1968
).
53.
P. J.
Dellar
, “
An interpretation and derivation of the lattice Boltzmann method using Strang splitting
,”
Comput. Math. Appl.
(published online
2011
).
54.
D.
d'Humières
and
I.
Ginzburg
, “
Viscosity independent numerical errors for Lattice Boltzmann models: From recurrence equations to ‘magic' collision numbers
,”
Comput. Math. Appl.
58
,
823
(
2009
).
55.
I.
Ginzburg
,
F.
Verhaeghe
, and
D.
d'Humières
, “
Study of simple hydrodynamic solutions with the two-relaxation-times lattice Boltzmann scheme
,”
Comm. Comp. Phys.
3
,
519
(
2008
).
56.
G. A.
Bird
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
(
Clarendon
,
Oxford
,
1994
).
57.
C.
Shen
,
J.
Fan
, and
C.
Xie
, “
Statistical simulation of rarefied gas flows in micro-channels
,”
J. Comput. Phys.
189
,
512
(
2003
).
58.
A.
Beskok
and
G. E.
Karniadakis
, “
A model for flows in channels, pipes, and ducts at micro and nano scales
,”
Microscale Thermophys. Eng.
3
,
43
(
1999
).
59.
C. J.
Lee
, “
Unique determination of solutions to the Burnett equations
,”
AIAA J.
32
,
985
(
1994
).
60.
R. K.
Agarwal
and
K.-Y.
Yun
, “
Burnett simulations of flows in microdevices
,” in
The MEMS Handbook
, edited by
M. G.
el Hak
(
CRC
,
Boca Raton
,
2002
), Chap. 7.
61.
K. R.
Agarwal
,
K.-Y.
Yun
, and
R.
Balakrishnan
, “
Beyond Navier–Stokes: Burnett equations for flows in the continuum-transition regime
,”
Phys. Fluids
13
,
3061
(
2001
).
You do not currently have access to this content.