The dynamics of a 2D rotating Crookes radiometer is studied using a moving mesh unified gas kinetic scheme. The whole evolution process of a fan from an initial unsteady start-up to a final steady state rotational movement in a rarefied gas environment is simulated numerically. Through the numerical study, the unsteady force distribution along a vane which dynamically drives the fan movement is captured. And a quantitative connection between total torque and rotational speed of the fan in the Knudsen number regime of 10−3 < Kn < 102 is obtained. Based on the dimensional analysis, the total radiometric torque can be decomposed into a net radiometric driving torque and a rotational resistance. Based on the numerical data, the analytical functions of the torque and angular velocity of a rotating fan in terms of Knudsen number are quantitatively constructed. This relationship is used to explain the experimental observation of the Knudsen number shift for the appearance of the maximum torque and the maximum rotational speed in the transitional flow regime.

1.
W.
Crookes
, “
On attraction and repulsion resulting from radiation
,”
Philos. Trans. R. Soc. London
164
,
501
527
(
1874
).
2.
O.
Reynolds
, “
On the forces caused by the communication of heat between a surface and a gas; and on a new photometer
,”
Philos. Trans. R. Soc. London
166
,
725
735
(
1876
).
3.
O.
Reynolds
, “
On certain dimensional properties of matter in the gaseous state
,”
Philos. Trans. R. Soc. London
170
,
727
845
(
1879
).
4.
J. C.
Maxwell
, “
On stresses in rarefied gases arising from inequalities of temperature
,”
Philos. Trans. R. Soc. London
170
,
231
256
(
1879
).
5.
A.
Einstein
, “
Zur theorie der radiometerkräfte
,”
Z. Phys.
27
,
1
6
(
1924
).
6.
W. H.
Westphal
, “
Messungen am radiometer
,”
Z. Phys.
1
,
92
100
(
1920
).
7.
N.
Selden
,
C.
Ngalande
,
S.
Gimelshein
,
E. P.
Muntz
,
A.
Alexeenko
, and
A.
Ketsdever
, “
Area and edge effects in radiometric forces
,”
Phys. Rev. E
79
,
041201
(
2009
).
8.
G.
Binnig
,
C. F.
Quate
, and
C.
Gerber
, “
Atomic force microscope
,”
Phys. Rev. Lett.
56
,
930
933
(
1986
).
9.
A.
Passian
,
A.
Wig
,
F.
Meriaudeau
,
T. L.
Ferrell
, and
T.
Thundat
, “
Knudsen forces on microcantilevers
,”
J. Appl. Phys.
92
,
6326
(
2002
).
10.
A.
Passian
,
R. J.
Warmack
,
A.
Wig
,
R. H.
Farahi
,
F.
Meriaudeau
,
T. L.
Ferrell
, and
T.
Thundat
, “
Observation of Knudsen effect with microcantilevers
,”
Ultramicroscopy
97
,
401
406
(
2003
).
11.
A.
Passian
,
R. J.
Warmack
,
T. L.
Ferrell
, and
T.
Thundat
, “
Thermal transpiration at the microscale: A Crookes cantilever
,”
Phys. Rev. Lett.
90
,
124503
(
2003
).
12.
M.
Scandurra
,
F.
Iacopetti
, and
P.
Colona
, “
Gas kinetic forces on thin plates in the presence of thermal gradients
,”
Phys. Rev. E
75
,
026308
(
2007
).
13.
L. H.
Han
,
S. M.
Wu
,
J. C.
Condit
,
N. J.
Kemp
,
T. E.
Milner
,
M. D.
Feldman
, and
S. C.
Chen
, “
Light-powered micromotor driven by geometry-assisted, asymmetric photon-heating and subsequent gas convection
,”
Appl. Phys. Lett.
96
,
213509
(
2010
).
14.
S.
Taguchi
and
K.
Aoki
, “
Numerical analysis of rarefied gas flow induced around a flat plate with a single heated side
,”
AIP Conf. Proc.
1333
,
790
795
(
2011
).
15.
T. S.
Zhu
and
W. J.
Ye
, “
Origin of Knudsen forces on heated microbeams
,”
Phys. Rev. E
82
,
036308
(
2010
).
16.
J.
Nabeth
,
S.
Chigullapalli
, and
A. A.
Alexeenko
, “
Quantifying the Knudsen force on heated microbeams: A compact model and direct comparison with measurements
,”
Phys. Rev. E
83
,
066306
(
2011
).
17.
Y. A.
Anikin
, “
Numerical study of radiometric forces via the direct solution of the Boltzmann kinetic equation
,”
Comput. Math. Math. Phys.
51
,
1251
1266
(
2011
).
18.
N.
Selden
,
C.
Ngalande
,
N.
Gimelshein
,
S.
Gimelshein
, and
A.
Ketsdever
, “
Origins of radiometric forces on a circular vane with a temperature gradient
,”
J. Fluid Mech.
634
,
419
431
(
2009
).
19.
M.
Ota
,
T.
Nakao
, and
M.
Sakamoto
, “
Numerical simulation of molecular motion around laser microengine blades
,”
Math. Comput. Simul.
55
,
223
230
(
2001
).
20.
Y. A.
Anikin
, “
Numerical study of the radiometric phenomenon exhibited by a rotating Crookes radiometer
,”
Comput. Math. Math. Phys.
51
,
1923
1932
(
2011
).
21.
K.
Xu
and
J. C.
Huang
, “
A unified gas-kinetic scheme for continuum and rarefied flows
,”
J. Comput. Phys.
229
,
7747
7764
(
2010
).
22.
K.
Xu
and
J. C.
Huang
, “
An improved unified gas-kinetic scheme and the study of shock structures
,”
IMA J. Appl. Math.
76
,
698
711
(
2011
).
23.
J. C.
Huang
,
K.
Xu
, and
P. B.
Yu
, “
A unified gas-kinetic scheme for continuum and rarefied flows II: Multi-dimensional cases
,”
Comm. Comp. Phys.
12
,
662
690
(
2012
).
24.
S. Z.
Chen
,
K.
Xu
,
C. B.
Lee
, and
Q. D.
Cai
, “
A unified gas kinetic scheme with moving mesh and velocity space adaptation
,”
J. Comput. Phys.
231
,
6643
6664
(
2012
).
25.
A. L.
Lereu
,
A.
Passian
,
R. J.
Warmack
,
T. L.
Ferrell
, and
T.
Thundat
, “
Effect of thermal variations on the Knudsen forces in the transitional regime
,”
Appl. Phys. Lett.
84
,
1013
1015
(
2004
).
26.
N. E.
Gimelshein
,
S. F.
Gimelshein
,
A. D.
Ketsdever
, and
N. P.
Selden
, “
Shear force in radiometric flows
,”
AIP Conf. Proc.
1333
,
661
666
(
2011
).
27.
G. J.
Maslach
and
S. A.
Schaaf
, “
Cylinder drag in the transition from continuum to free molecule flow
,”
Phys. Fluids
6
,
315
(
1963
).
You do not currently have access to this content.