We consider the generation and evolution of finite amplitude internal waves over, and downstream of, small-amplitude topography. We demonstrate that in addition to a large amplitude, non-hydrostatic wave trapped over the topography, a finite amplitude wavetrain of Poincaré waves is generated. This wavetrain is nearly hydrostatic over the majority of its extent, but can lead to the generation of non-hydrostatic undular bores, weak shear instability, and large secondary solitary-like waves downstream. The secondary waves are non-hydrostatic, and unlike the undular bores, achieve steady state. For parameters corresponding to a high latitude, coastal ocean secondary waves are generated well over 100 km downstream of the topography. The hydrostatic Poincaré waves thus serve as a bridge for strong energy transfer from the forcing region to distant regions downstream.

1.
J. R.
Apel
,
J. R.
Holbrook
,
A. K.
Liu
, and
J. J.
Tsai
, “
The Sulu Sea internal soliton experiment
,”
J. Phys. Oceanogr.
15
,
1625
(
1985
).
2.
A. R.
Osborne
and
T. L.
Burch
, “
Internal solitons in the Andaman Sea
,”
Science
208
,
451
(
1980
).
3.
J. N.
Moum
and
W. D.
Smyth
, “
The pressure disturbance of a nonlinear internal wave train
,”
J. Fluid Mech.
558
,
153
(
2006
).
4.
J.
Pedlosky
,
Geophysical Fluid Dynamics
, 2nd ed. (
Springer
,
New York
,
1987
).
5.
K. R.
Helfrich
and
W. K.
Melville
, “
Long nonlinear internal waves
,”
Annu. Rev. Fluid Mech.
38
,
395
(
2006
).
6.
T.
Gerkema
and
V. I.
Shrira
, “
Near-inertial waves in the ocean: Beyond the ‘traditional approximation'
,”
J. Fluid Mech.
529
,
195
(
2005
).
7.
A. E.
Gill
,
Atmosphere–Ocean Dynamics
(
Academic
,
San Diego
,
1982
).
8.
R.
Grimshaw
,
L.
Ostrovsky
,
V. I.
Shrira
, and
Y. A.
Stepanyants
, “
Long nonlinear surface and internal gravity waves in a rotating ocean
,”
Surv. Geophys.
19
,
289
, (
1998
).
9.
C.
Katsis
and
T. R.
Akylas
, “
Solitary internal waves in rotating channels: A numerical study
,”
Phys. Fluids
30
,
297
(
1987
).
10.
K. R.
Helfrich
, “
Decay and return of internal solitary waves with rotation
,”
Phys. Fluids
19
,
0206601
(
2007
).
11.
R.
Grimshaw
and
K.
Helfrich
, “
Long time solutions of the Ostrovsky equation
,”
Stud. App. Math.
121
,
71
(
2008
).
12.
M.
Stastna
,
F. J.
Poulin
,
K. L.
Rowe
, and
C. J.
Subich
, “
On fully nonlinear, vertically trapped wave packets in a stratified fluid on the f-plane
,”
Phys. Fluids
21
,
106604
(
2009
).
13.
K.
Helfrich
and
R.
Grimshaw
, “
Nonlinear disintegration of the internal tide
,”
J. Phys. Oceanogr.
38
,
686
(
2008
).
14.
Q.
Li
and
D. M.
Farmer
, “
The generation and evolution of nonlinear internal waves in the deep basin of the South China Sea
,”
J. Phys. Oceanogr.
41
,
1345
(
2011
).
15.
G. G.
Vilenski
and
E. R.
Johnson
, “
Near-critical free-surface rotating flow over topography
,”
Proc. R. Soc. London, Ser. A
460
,
2865
(
2004
).
16.
P. G.
Baines
,
Topographic Effects in Stratified Flows: Cambridge Monographs on Mechanics
(
Cambridge University Press
,
Cambridge
,
1997
).
17.
R.
Grimshaw
and
N.
Smyth
, “
Resonant flow of a stratified fluid over topography
,”
J. Fluid Mech.
169
,
429
(
1986
).
18.
M.
Stastna
and
W. R.
Peltier
, “
On the resonant generation of large-amplitude internal solitary and solitary-like waves
,”
J. Fluid Mech.
543
,
267
(
2005
).
19.
N.
Soontiens
,
C.
Subich
, and
M.
Stastna
, “
Numerical simulation of supercritical trapped internal waves over topography
,”
Phys. Fluids
22
,
116605
(
2010
).
20.
K. G.
Lamb
, “
Shoaling solitary internal waves: On a criterion for the formation of waves with trapped cores
,”
J. Fluid Mech.
478
,
81
(
2003
).
21.
K. G.
Lamb
and
B.
Wan
, “
Conjugate flows and flat solitary waves for a continuously stratified fluid
,”
Phys. Fluids
10
,
2061
(
1998
).
22.
J. G.
Esler
,
O. J.
Rump
, and
E. R.
Johnson
, “
Steady rotating flows over a ridge
,”
Phys. Fluids
17
,
116601
(
2005
).
23.
J. G.
Esler
,
O. J.
Rump
, and
E. R.
Johnson
, “
Transcritical rotating flow over topography
,”
J. Fluid Mech.
590
,
81
(
2007
).
24.
J. G.
Esler
,
O. J.
Rump
, and
E. R.
Johnson
, “
Supercritical rotating flow over topography
,”
Phys. Fluids
21
,
06601
(
2009
).
25.
V. I.
Shrira
, “
On long strongly nonlinear waves in a rotating ocean
,”
Izv., Acad. Sci., USSR, Atmos. Oceanic Phys.
22
,
298
(
1986
).
26.
P.
Kundu
and
I. M.
Cohen
,
Fluid Mechanics
, 3rd ed. (
Elsevier Academic
,
San Diego
,
2004
).
27.
K. G.
Lamb
, “
Numerical experiments of internal wave generation by strong tidal flow across a finite amplitude bank edge
,”
J. Geophys. Res.
99
,
843
, doi: (
1994
).
28.
J. B.
Bell
and
D. L.
Marcus
, “
A second-order projection method for variable-density flows
,”
J. Comp. Phys.
101
,
334
(
1992
).
29.
L. M.
Margolin
,
P. K.
Smolarkiewicz
, and
A. A.
Wyszogradzki
, “
Implicit turbulence modeling for high Reynolds number flow
,”
J. Fluid Eng.
124
,
862
(
2002
).
30.
L. M.
Margolin
,
P. K.
Smolarkiewicz
, and
A. A.
Wyszogradzki
, “
Dissipation in implicit turbulence models: A computational study
,”
J. Appl. Mech.
73
,
469
(
2006
).
31.
P. E.
Holloway
,
E.
Pelinovsky
, and
T.
Talipova
, “
A generalized Korteweg-de Vries model of internal tide transformation in the coastal zone
,”
J. Geophys. Res.
104
,
18333
, doi: (
1999
).
32.
E. J.
Parkes
, “
Explicit solutions of the reduced Ostrovsky equation
,”
Chaos, Solitons Fractals
31
,
602
(
2007
).
33.
J. C. B.
Da Silva
and
K. R.
Helfrich
, “
Synthetic Aperture Radar observations of resonantly generated internal solitary waves at Race Point Channel (Cape Cod)
,”
J. Geophys. Res.
113
,
C11106
, doi: (
2008
).
You do not currently have access to this content.