Thin viscous liquid films driven by capillarity are well described in the lubrication theory through the thin film equation. In this article, we present an analytical solution of this equation for a particular initial profile: a stepped perturbation. This initial condition allows a linearization of the problem making it amenable to Fourier analysis. The solution is obtained and characterized. As for a temperature step in the heat equation, self-similarity of the first kind of the full evolution is demonstrated and a long-term expression for the excess free energy is derived. In addition, hydrodynamical fields are described. The solution is then compared to experimental profiles from a model system: a polystyrene nanostep above the glass transition temperature which flows due to capillarity. The excellent agreement enables a precise measurement of the capillary velocity for this polymeric liquid, without involving any numerical simulation. More generally, as these results hold for any viscous system driven by capillarity, the present solution may provide a useful tool in hydrodynamics of thin viscous films.

1.
A.
Oron
,
S.
Davis
, and
S.
Bankoff
, “
Long-scale evolution of thin liquid films
,”
Rev. Mod. Phys.
69
,
931
(
1997
).
2.
R. V.
Craster
and
O. K.
Matar
, “
Dynamics and stability of thin liquid films
,”
Rev. Mod. Phys.
81
,
1131
(
2009
).
3.
R.
Blossey
,
Thin Liquid Films
(
Springer
,
Dordrecht
,
2012
).
4.
F.
Brochard Wyart
and
P.-G.
de Gennes
, “
Viscosity at small scales in polymer melts
,”
Eur. Phys. J. E
1
,
93
(
2000
).
5.
H.
Bodiguel
and
C.
Fretigny
, “
Reduced viscosity in thin polymer films
,”
Phys. Rev. Lett.
97
,
266105
(
2006
).
6.
Z.
Fakhraai
and
J. A.
Forrest
, “
Measuring the surface dynamics of glassy polymers
,”
Science
319
,
600
(
2008
).
7.
D. R.
Barbero
and
U.
Steiner
, “
Nonequilibrium polymer rheology in spin-cast films
,”
Phys. Rev. Lett.
102
,
248303
(
2009
).
8.
R. L.
Jones
,
S. K.
Kumar
,
D. L.
Ho
,
R. M.
Briber
, and
T. P.
Russell
, “
Chain conformation in ultrathin polymer films
,”
Nature (London)
400
,
146
(
1999
).
9.
L.
Si
,
M. V.
Massa
,
K.
Dalnoki-Veress
,
H. R.
Brown
, and
R. A. L.
Jones
, “
Chain entanglement in thin freestanding polymer films
,”
Phys. Rev. Lett.
94
,
127801
(
2005
).
10.
O.
Bäumchen
,
R.
Fetzer
, and
K.
Jacobs
, “
Reduced interfacial entanglement density affects the boundary conditions of polymer flow
,”
Phys. Rev. Lett.
103
,
247801
(
2009
).
11.
K.
Shin
,
S.
Obukhov
,
J.-T.
Chen
,
J.
Huh
,
Y.
Hwang
,
S.
Mok
,
P.
Dobriyal
,
P.
Thiyagarajan
, and
T.
Russell
, “
Enhanced mobility of confined polymers
,”
Nature Mater.
6
,
961
(
2007
).
12.
R.
Mukherjee
,
A.
Sharma
, and
U.
Steiner
, “
Surface instability and pattern formation in thin polymer films
,” in
Generating Micro- and Nanopatterns on Polymeric Materials
(
Wiley-VCH
,
Weinheim
,
2011
).
13.
F.
Closa
,
F.
Ziebert
, and
E.
Raphaël
, “
Interplay of internal stresses, electric stresses, and surface diffusion in polymer films
,”
Phys. Rev. E
83
,
051603
(
2011
).
14.
G.
Amarandei
,
P.
Beltrame
,
I.
Clancy
,
C.
O'Dwyer
,
A.
Arshak
,
U.
Steiner
,
D.
Corcoran
, and
U.
Thiele
, “
Pattern formation induced by an electric field in a polymer-air-polymer thin film system
,”
Soft Matter
8
,
6333
(
2012
).
15.
L. E.
Stillwagon
and
R. G.
Larson
, “
Leveling of thin films over uneven substrates during spin coating
,”
Phys. Fluids A
2
,
1937
(
1990
).
16.
A.
Raegen
,
M.
Chowdhury
,
C.
Calers
,
A.
Schmatulla
,
U.
Steiner
, and
G.
Reiter
, “
Aging of thin polymer films cast from a near theta solvent
,”
Phys. Rev. Lett.
105
,
227801
(
2010
).
17.
G.
Reiter
and
P.-G.
de Gennes
, “
Spin-cast, thin, glassy polymer films: Highly metastable forms of matter
,”
Eur. Phys. J. E
6
,
25
(
2001
).
18.
O.
Bäumchen
,
J. D.
McGraw
,
J. A.
Forrest
, and
K.
Dalnoki-Veress
, “
Reduced glass transition temperatures in thin polymer films: Surface effect or artifact?
Phys. Rev. Lett.
109
,
055701
(
2012
).
19.
T. G.
Myers
, “
Thin films with high surface tension
,”
SIAM Rev.
40
,
441
(
1998
).
20.
L.
Kondic
, “
Instabilities in gravity driven flow of thin fluid films
,”
SIAM Rev.
45
,
95
(
2003
).
21.
A.
Bertozzi
, “
The mathematics of moving contact lines in thin liquid films
,”
Not. Am. Math. Soc.
45
(
6
),
689
(
1998
).
22.
T.
Salez
,
J. D.
McGraw
,
S. L.
Cormier
,
O.
Bäumchen
,
K.
Dalnoki-Veress
, and
E.
Raphaël
, “
Numerical solutions of thin film equations for polymer flows
,” Eur. Phys. J. E (in press).
23.
J. D.
McGraw
,
N. M.
Jago
, and
K.
Dalnoki-Veress
, “
Capillary levelling as a probe of thin film polymer rheology
,”
Soft Matter
7
,
7832
(
2011
).
24.
J. D.
McGraw
,
T.
Salez
,
O.
Bäumchen
,
E.
Raphaël
, and
K.
Dalnoki-Veress
, “
Self-similarity and energy dissipation in stepped polymer films
,”
Phys. Rev. Lett.
109
,
128303
(
2012
).
25.
J.-B. J.
Fourier
,
Théorie Analytique De La Chaleur
(
Firmin Didot, père et fils
,
Paris
,
1822
).
26.
S.
Wu
, “
Surface and interfacial tensions of polymer melts. II. Poly(methyl methacrylate), poly(n-butyl methacrylate), and polystyrene
,”
J. Phys. Chem.
74
,
632
(
1970
).
27.
M.
Rubinstein
and
R. H.
Colby
,
Polymer Physics
(
Oxford University Press
,
Oxford
,
2003
).
28.
J.
Brandrup
,
E. H.
Immergut
,
E. A.
Grulke
,
A.
Abe
, and
D. R.
Bloch
,
Polymer Handbook
(
Wiley
,
Hoboken
,
2005
).
29.
H.
Huppert
, “
The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface
,”
J. Fluid Mech.
121
,
43
(
1982
).
30.
R.
Seemann
,
S.
Herminghaus
, and
K.
Jacobs
, “
Dewetting patterns and molecular forces: A reconciliation
,”
Phys. Rev. Lett.
86
,
5534
(
2001
).
31.
L. E.
Stillwagon
and
R. G.
Larson
, “
Fundamentals of topographic substrate levelling
,”
J. Appl. Phys.
63
,
5251
(
1988
).
32.
G. I.
Barenblatt
,
Scaling, Self-similarity, and Intermediate Asymptotics
(
Cambridge University Press
,
Cambridge
,
1996
).
33.
A.
Aradian
,
E.
Raphaël
, and
P.-G.
de Gennes
, “
Marginal pinching in soap films
,”
Europhys. Lett.
55
,
834
(
2001
).
34.
G. W.
Pfeiffer
, “
The oscillatory nature of the equation y′′′ + qy + ry = 0
,”
J. Differ. Equations
11
,
138
(
1972
).
35.
G. W.
Pfeiffer
, “
Asymptotic solutions of y′′′ + qy + ry = 0
,”
J. Differ. Equations
11
,
145
(
1972
).
36.
S. L.
Cormier
,
J. D.
McGraw
,
T.
Salez
,
E.
Raphaël
, and
K.
Dalnoki-Veress
, “
Beyond Tanner's law: Crossover between spreading regimes of a viscous droplet on an identical film
,”
Phys. Rev. Lett.
109
,
154501
(
2012
).
37.
I. S.
Gradshteyn
and
I. M.
Ryzhik
,
Table of Integrals, Series, and Products
(
Academic
,
Salt Lake City
,
1965
).
38.
M.
Abramowitz
and
I.
Stegun
,
Handbook of Mathematical Functions
(
Dover
,
Mineola
,
1965
).
39.
A.
Bach
,
K.
Almdal
,
H. K.
Rasmussen
, and
O.
Hassager
, “
Elongational viscosity of narrow molar mass distribution polystyrene
,”
Macromolecules
36
,
5174
(
2003
).
40.
M. L.
Williams
,
R. F.
Landel
, and
J. D.
Ferry
, “
The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids
,”
J. Am. Chem. Soc.
77
,
3701
(
1955
).
You do not currently have access to this content.