This paper explores the influence surface slip, uniform in all directions with constant slip length, exerts on the physics of laminar jet impingement on a flat horizontal surface. Slip exists on superhydrophobic surfaces, and due to the relatively thin film dynamics associated with the growth of the laminar jet after impingement, its influence on the fluid physics is significant. An analysis based on momentum considerations is presented that allows prediction of the relevant thin film parameters as a function of radial position from the impingement point, jet Reynolds number, and constant relative slip length of the surface. Further, the analysis allows determination of the hydraulic jump location in terms of laminar jet characteristics and imposed downstream liquid depth. The results reveal that at a given radial location, the boundary layer growth and thin film thickness decrease, while the surface velocity of the thin film increases with increasing slip at the surface. The departure from classical no-slip behavior is quantified over a range of realizable slip conditions. Increasing slip length also leads to formation of hydraulic jumps at increasing radial location. An expression based on the results is presented that allows prediction of the hydraulic jump location as a function of the magnitude of the slip and all other influencing variables.

1.
A.
Craik
,
R.
Latham
,
M.
Fawkes
, and
P.
Gibbon
, “
The circular hydraulic jump
,”
J. Fluid Mech.
112
,
347
362
(
1981
).
2.
J. W.
Bush
and
J. M.
Aristoff
, “
The influence of surface tension on the circular hydraulic jump
,”
J. Fluid Mech.
489
,
229
238
(
2003
).
3.
I.
Tani
, “
Water jump in the boundary layer
,”
J. Phys. Soc. Jpn.
4
,
212
215
(
1949
).
4.
S.
Ishigai
,
S.
Nakanishi
,
M.
Mizuno
, and
T.
Imamura
, “
Heat transfer of the impinging round water jet in the interference zone of film flow along the wall
,”
Bull. JSME
20
,
85
92
(
1977
).
5.
V.
Nakoryakov
,
B.
Pokusaev
, and
E.
Troyan
, “
Impingement of an axisymmetric liquid jet on a barrier
,”
Int J. Heat Mass Transfer
21
,
1175
1184
(
1978
).
6.
X.
Liu
and
J.
Lienhard
, “
The hydraulic jump in circular jet impingement and in other thin liquid films
,”
Exp. Fluids
15
,
108
116
(
1993
).
7.
C.
Ellegaard
,
A.
Hansen
,
A.
Haaning
,
K.
Hansen
, and
T.
Bohr
, “
Experimental results on flow separation and transitions in the circular hydraulic jump
,”
Phys. Scr.
T67
,
105
110
(
1996
).
8.
E. J.
Watson
, “
The radial spread of a liquid jet over a horizontal plane
,”
J. Fluid Mech.
20
,
481
499
(
1964
).
9.
T.
Bohr
,
P.
Dimon
, and
V.
Putkaradze
, “
Shallow-water approach to the circular hydraulic jump
,”
J. Fluid Mech.
254
,
635
648
(
1993
).
10.
J. W.
Bush
,
J. M.
Aristoff
, and
A. E.
Hosoi
, “
An experimental investigation of the stability of the circular hydraulic jump
,”
J. Fluid Mech.
558
,
33
52
(
2006
).
11.
F.
Higuera
, “
The circular hydraulic jump
,”
Phys. Fluids
9
,
1476
1478
(
1997
).
12.
G.
Birkhoff
and
E. H.
Zarantonello
,
Jets, Wakes and Cavities
(
Academic
,
1957
), p.
353
.
13.
B.
Wolford
,
D.
Maynes
, and
B. W.
Webb
, “
Liquid flow through microchannels with grooved walls under wetting and superhydrophobic conditions
,”
Microfluid. Nanofluid.
7
,
121
135
(
2009
).
14.
J. R.
Philip
, “
Flows satisfying mixed no-slip and no-shear condition
,”
J. Appl. Math. Phys.
23
,
353
371
(
1972
).
15.
E.
Lauga
and
H.
Stone
, “
Effective slip in pressure-driven stokes flow
,”
J. Fluid Mech.
489
,
55
77
(
2003
).
16.
K.
Jeffs
,
D.
Maynes
, and
B. W.
Webb
, “
Prediction of turbulent channel flow with superhydrophobic walls consisting of micro-ribs and cavities oriented parallel to the flow direction
,”
Int. J. Heat Mass Transfer
53
,
786
796
(
2010
).
17.
K.
Watanabe
,
Y.
Udagawa
, and
H.
Udagawa
, “
Drag reduction of newtonian fluid in a circular pipe with a highly water-repellent wall
,”
J. Fluid Mech.
381
,
225
238
(
1999
).
18.
J.
Ou
,
B.
Perot
, and
J. P.
Rothstein
, “
Laminar drag reduction in microchannels using ultrahydrophobic surfaces
,”
Phys. Fluids
16
,
4635
4643
(
2004
).
19.
C.
Lee
,
C.-H.
Choi
, and
C.-J.
Kim
, “
Structured surfaces for giant liquid slip
,”
Phys. Rev. Lett.
101
,
064501
(
2008
).
20.
J.
Ou
and
J. P.
Rothstein
, “
Direct velocity measurements of the flow past drag-reducing ultrahydrophobic surfaces
,”
Phys. Fluids
17
,
103606
(
2005
).
21.
A.
Shastry
,
M. J.
Case
, and
K. F.
Bohringer
, “
Directing droplets using microstructured surfaces
,”
Langmuir
22
,
6161
6167
(
2006
).
22.
P.
Tsai
,
S.
Pacheco
,
C.
Pirat
,
L.
Lefferts
, and
D.
Lohse
, “
Drop impact upon micro- and nano-structured superhydrophobic surfaces
,”
Langmuir
25
(
50
),
12293
(
2009
).
23.
J.
Bico
,
C.
Marzolin
, and
D.
Quéré
, “
Pearl drops
,”
Europhys. Lett.
47
,
220
(
1999
).
24.
D.
Bartolo
,
F.
Bouamrirene
,
É.
Verneuil
,
A.
Buguin
,
P.
Silberzan
, and
S.
Moulinet
, “
Bouncing or sticky droplets: Impalement transitions on superhydrophobic micropatterned surfaces
,”
Europhys. Lett.
74
,
299
(
2006
).
25.
M.
Reyssat
,
A.
Pépin
,
F.
Marty
,
Y.
Chen
, and
D.
Quéré
, “
Bouncing transitions on microtextured materials
,”
Europhys. Lett.
74
,
306
(
2006
).
26.
Z.
Wang
,
C.
Lopex
,
A.
Hirsa
, and
N.
Koratkar
, “
Impact dynamics and rebound of water droplets on superhydrophobic carbon nanotube arrays
,”
Appl. Phys. Lett.
91
,
023105
(
2007
).
27.
R.
Rioboo
,
M.
Voué
,
A.
Vaillant
, and
J.
De Coninck
, “
Drop impact on porous superhydrophobic polymer surfaces
,”
Langmuir
24
,
14074
(
2008
).
28.
E.
Dressaire
,
L.
Courbin
,
J.
Crest
, and
H. A.
Stone
, “
Thin-film fluid flows over microdecorated surfaces: Observation of polygonal hydraulic jumps
,”
Phys. Rev. Lett.
102
,
194502
(
2009
).
29.
E.
Dressaire
,
L.
Courbin
,
J.
Crest
, and
H. A.
Stone
, “
Inertia dominated thin-film flows over microdecorated surfaces
,”
Phys. Fluids
22
,
073602
(
2010
).
30.
A. M. J.
Davis
and
E.
Lauga
, “
Hydrodynamic friction of fakir-like super-hydrophobic surfaces
,”
J. Fluid Mech.
661
,
402
(
2010
).
31.
C.
Cottin-Bizonne
,
C.
Barentin
, and
L.
Bocquet
, “
Scaling laws for slippage on superhydrophobic fractal surfaces
,”
Phys. Fluids
24
,
012001
(
2012
).
32.
D.
Maynes
,
M.
Johnson
, and
B. W.
Webb
, “
Free-surface liquid jet impingement on rib patterned superhydrophobic surfaces
,”
Phys. Fluids
22
,
052104
(
2011
).
33.
A.
Kibar
,
H.
Karabay
,
K. S.
Yigit
,
I. O.
Ucar
, and
H. Y.
Erbil
, “
Experimental investigation of inclined liquid water jet flow onto vertically located superhydrophobic surfaces
,”
Exp. Fluids
49
,
1135
1145
(
2010
).
34.
T.
von Kármán
, “
Über läminare und turbulence reibung
,”
J. Appl. Math. Mech. (ZAMM)
1
,
233
252
(
1921
).
35.
K.
Pohlhausen
, “
Zur näherungsweisen integration der differentialgleichung der laminaren grenzschicht
,”
J. Appl. Math. Mech. (ZAMM)
1
,
252
268
(
1921
).
36.
C. L. M. H.
Navier
, “
Memoire sur les lois du mouvement des fluides
,”
Mem. Acad. Sci. Inst. Fr.
6
,
389
440
(
1823
).
37.
C.-H.
Choi
and
C.-J.
Kim
, “
Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface
,”
Phys. Rev. Lett.
96
,
066001
(
2006
).
38.
R.
Daniello
,
N. E.
Waterhouse
, and
J. P.
Rothstein
, “
Turbulent drag reduction using superhydrophobic surfaces
,”
Phys. Fluids
21
,
085103
(
2009
).
You do not currently have access to this content.