A polydimethylsiloxane microfluidic device composed of a single microchannel with a thin flexible layer present over a short length along one side of the channel was fabricated and modelled in order to investigate the complex fluid-structure interaction that arises between a flowing fluid and a deformable wall. Experimental measurements of thin layer deformation and pressure drop are compared with predictions of two- and three-dimensional computational models that numerically solve the coupled set of equations governing both the elasticity of the thin layer and the fluid. It is shown that the two-dimensional model, which assumes the flexible thin layer comprises an infinitely wide elastic beam of finite thickness, reasonably approximates a three-dimensional model, and is in excellent agreement with experimental observations of the thin layer profile when the width of the thin layer is beyond a critical value, roughly twice the length of the thin layer.

1.
J. M. K.
Ng
,
I.
Gitlin
,
A. D.
Stroock
, and
G. M.
Whitesides
, “
Components for integrated poly(dimethylsiloxane) microfluidic systems
,”
Electrophoresis
23
,
3461
3473
(
2002
).
2.
J.
Friend
and
L.
Yeo
, “
Fabrication of microfluidic devices using polydimethylsiloxane
,”
Biomicrofluidics
4
,
026502
(
2010
).
3.
L. Y.
Yeo
,
H.-C.
Chang
,
P. P. Y.
Chan
, and
J. R.
Friend
, “
Microfluidic devices for bioapplications
,”
Small
7
,
12
48
(
2011
).
4.
T.
Vestad
,
D. W. M.
Marr
, and
J.
Oakey
, “
Flow control for capillary-pumped microfluidic systems
,”
J. Micromech. Microeng.
14
,
1503
1506
(
2004
).
5.
C. H.
Wang
and
G. B.
Lee
, “
Pneumatically driven peristaltic micropumps utilizing serpentine-shape channels
,”
J. Micromech. Microeng.
16
,
341
348
(
2006
).
6.
D.
Irimia
and
M.
Toner
, “
Cell handling using microstructured membranes
,”
Lab Chip
6
,
345
352
(
2006
).
7.
S.-B.
Huang
,
M.-H.
Wu
, and
G.-B.
Lee
, “
A tunable micro filter modulated by pneumatic pressure for cell separation
,”
Sens. Actuators B
142
,
389
399
(
2009
).
8.
A. L.
Thangawng
,
R. S.
Ruoff
,
M. A.
Swartz
, and
M. R.
Glucksberg
, “
An ultra-thin PDMS membrane as a bio/micronano interface: Fabrication and characterization
,”
Biomed. Microdevices
9
,
587
595
(
2007
).
9.
D.
Fuard
,
T.
Tzvetkova-Chevolleau
,
P. T. S.
Decossas
, and
P.
Schiavone
, “
Optimization of poly-di-methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility
,”
Microelectron. Eng.
85
,
1289
1293
(
2008
).
10.
D. N.
Hohne
,
J. G.
Younger
, and
M. J.
Solomon
, “
Flexible microfluidic device for mechanical property characterization of soft viscoelastic solids such as bacterial biofilms
,”
Langmuir
25
,
7743
7751
(
2009
).
11.
M. A.
Unger
,
H. P.
Chou
,
T.
Thorsen
,
A.
Scherer
, and
S. R.
Quake
, “
Monolithic microfabricated valves and pumps by multilayer soft lithography
,”
Science
288
,
113
116
(
2000
).
12.
D.
Irimia
,
S.-Y.
Liu
,
W.
Tharp
,
A.
Samadani
,
M.
Toner
, and
M.
Poznansky
, “
Microfluidic system for measuring neutrophil migratory responses to fast switches of chemical gradients
,”
Lab Chip
6
,
191
198
(
2006
).
13.
W. A.
Conrad
, “
Pressure-flow relationships in collapsible tubes
,”
IEEE Trans. Bio-Med. Eng.
16
,
284
295
(
1969
).
14.
R. W.
Brower
and
C.
Scholten
, “
Experimental evidence on the mechanism for the instability of flow in collapsible vessels
,”
Med. Biol. Eng.
13
,
839
844
(
1975
).
15.
C. D.
Bertram
, “
Two modes of instability in a thick-walled collapsible tube conveying a flow
,”
J. Biomech.
15
,
223
224
(
1982
).
16.
C. D.
Bertram
, “
Unstable equilibrium behaviour in collapsible tubes
,”
J. Biomech.
19
,
61
69
(
1986
).
17.
C. D.
Bertram
, “
The effects of wall thickness, axial strain and end proximity on the pressure-area relation of collapsible tubes
,”
J. Biomech.
20
,
863
876
(
1987
).
18.
C. D.
Bertram
,
C. J.
Raymond
, and
T. J.
Pedley
, “
Mapping of instabilities during flow through collapsed tubes of differing length
,”
J. Fluids. Struct.
4
,
125
153
(
1990
).
19.
C. D.
Bertram
,
C. J.
Raymond
, and
T. J.
Pedley
, “
Application of non-linear dynamics concepts to the analysis of self-excited oscillations of a collapsible tube conveying a flow
,”
J. Fluids. Struct.
5
,
391
426
(
1991
).
20.
C. D.
Bertram
and
S. A.
Godbole
, “
LDA measurements of velocities in a simulated collapsed tube
,”
ASME J. Biomech. Eng.
119
,
357
363
(
1997
).
21.
C. D.
Bertram
and
R.
Castles
, “
Flow limitation in uniform thick-walled collapsible tubes
,”
J. Fluids Struct.
13
,
399
418
(
1999
).
22.
C. D.
Bertram
and
N. S. J.
Elliott
, “
Flow-rate limitation in a uniform thin-walled collapsible tube, with comparison to a uniform thick-walled tube and a tube of tapering thickness
,”
J. Fluids Struct.
17
(
4
),
541
559
(
2003
).
23.
X. Y.
Luo
and
T. J.
Pedley
, “
A numerical simulation of steady flow in a 2-D collapsible channel
,”
J. Fluids Struct.
9
,
149
174
(
1995
).
24.
X. Y.
Luo
and
T. J.
Pedley
, “
A numerical simulation of unsteady flow in a two-dimensional collapsible channel
,”
J. Fluid Mech.
314
,
191
225
(
1996
).
25.
A. L.
Hazel
and
M.
Heil
, “
Steady finite-Reynolds-number flows in three-dimensional collapsible tubes
,”
J. Fluid Mech.
486
,
79
103
(
2003
).
26.
M.
Heil
and
O. E.
Jensen
, “
Flows in deformable tubes and channels—Theoretical models and biological applications
,” in
Flow Past Highly Compliant Boundaries and in Collapsible Tubes
, edited by
P. W.
Carpenter
and
T. J.
Pedley
(
Kluwer
,
Dordrecht
,
2003
), pp.
15
50
.
27.
A.
Marzo
,
X.
Luo
, and
C.
Bertram
, “
Three-dimensional collapse and steady flow in thick-walled flexible tubes
,”
J. Fluids. Struct.
20
,
817
835
(
2005
).
28.
H. F.
Liu
,
X. Y.
Luo
,
Z. X.
Cai
, and
T. J.
Pedley
, “
Sensitivity of unsteady collapsible channel flows to modelling assumptions
,”
Commun. Numer. Methods Eng.
25
,
483
504
(
2009
).
29.
M. S.
Carvalho
and
L. E.
Scriven
, “
Flows in forward deformable roll coating gaps: Comparison between spring and plane strain models of roll cover
J. Comput. Phys.
138
,
449
479
(
1997
).
30.
J. M.
deSantos
, “
Two-phase cocurrent downflow through constricted passages
,” Ph.D. dissertation (
University of Minnesota
, Minneapolis, MN,
1991
).
31.
K. N.
Christodoulou
and
L. E.
Scriven
, “
Discretization of free surface flows and other moving boundary problems
,”
J. Comput. Phys.
99
,
39
55
(
1992
).
32.
D. F.
Benjamin
, “
Roll coating flows and multiple roll systems
,” Ph.D. dissertation (
University of Minnesota
, Minneapolis, MN,
1994
).
33.
M.
Pasquali
and
L. E.
Scriven
, “
Free surface flows of polymer solutions with models based on the conformation tensor
,”
J. Non-Newtonian Fluid Mech.
108
,
363
409
(
2002
).
34.
G. A.
Zevallos
,
M. S.
Carvalho
, and
M.
Pasquali
, “
Forward roll coating flows of viscoelastic liquids
,”
J. Non-Newtonian Fluid Mech.
130
,
96
109
(
2005
).
35.
M.
Bajaj
,
J. R.
Prakash
, and
M.
Pasquali
, “
A computational study of the effect of viscoelasticity on slot coating flow of dilute polymer solutions
,”
J. Non-Newtonian Fluid Mech.
149
,
104
123
(
2008
).
36.
D.
Chakraborty
,
M.
Bajaj
,
L.
Yeo
,
J.
Friend
,
M.
Pasquali
, and
J. R.
Prakash
, “
Viscoelastic flow in a two-dimensional collapsible channel
,”
J. Non-Newtonian Fluid Mech.
165
,
1204
1218
(
2010
).
37.
ANSYS, Structural analyses guide, Mechanical APDL, Release 11.0, ANSYS, Inc., Canonsburg, PA, USA,
2010
.
38.
D. C.
Duffy
,
J. C.
McDonald
,
O. J. A.
Schueller
, and
G. M.
Whitesides
, “
Rapid prototyping of microfluidic systems in poly (dimethylsiloxane)
,”
Anal. Chem
70
,
4974
4984
(
1998
).
39.
N.
Mortensen
,
F.
Okkels
, and
H.
Bruus
, “
Reexamination of Hagen-Poiseuille flow: Shape dependence of the hydraulic resistance in microchannels
,”
Phys. Rev. E
71
,
057301
(
2005
).
40.
M. S.
Carvalho
, “
Roll coating flows in rigid and deformable gaps
,” Ph.D. dissertation (
University of Minnesota
, Minneapolis, MN,
1996
).
41.
H.
Schmid
and
B.
Michel
, “
Siloxane polymers for high-resolution, high-accuracy soft lithography
,”
Macromolecules
33
,
3042
3049
(
2000
).
42.
M.
Liu
,
J.
Sun
,
Y.
Sun
,
C.
Bock
, and
Q.
Chen
, “
Thickness-dependent mechanical properties of polydimethylsiloxane membranes
,”
J. Micromech. Microeng.
19
,
035028
(
2009
).
43.
M.
Liu
,
J.
Sun
, and
Q.
Chen
, “
Influences of heating temperature on mechanical properties of polydimethylsiloxane
,”
Sens. Actuators A
151
,
42
45
(
2009
).
44.
T.
Kim
,
J.
Kim
, and
O.
Jeong
, “
Measurement of nonlinear mechanical properties of PDMS elastomer
,”
Microelectron. Eng.
88
,
1982
1985
(
2011
).
45.
F.
Carrillo
,
S.
Gupta
,
M.
Balooch
,
S. J.
Marshall
,
G. W.
Marshall
,
L.
Pruitt
, and
C.
Puttlitz
, “
Nanoindentation of polydimethylsiloxane elastomers: Effect of crosslinking, work of adhesion, and fluid environment on elastic modulus
,”
J. Mater. Res.
20
,
2820
2830
(
2005
).
46.
K.
Johnson
,
Contact Mechanics
(
Cambridge University Press
,
Cambridge
,
2003
).
47.
W. C.
Oliver
and
G. M.
Pharr
, “
An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments
,”
J. Mater. Res.
7
,
1564
1583
(
1992
).
48.
V.
Gkanis
and
S.
Kumar
, “
Instability of creeping Couette flow past a neo-Hookean solid
,”
Phys. Fluids
15
,
2864
2871
(
2003
).
49.
X. Y.
Luo
,
B.
Calderhead
,
H. F.
Liu
, and
W. G.
Li
, “
On the initial configurations of collapsible tube flow
,”
Comput. Struct.
85
,
977
987
(
2007
).
You do not currently have access to this content.