A numerical method that employs a combination of contour advection and pseudo-spectral techniques is used to investigate instability in internal solitary waves with trapped cores. A three-layer configuration for the background stratification in which the top two layers are linearly stratified and the lower layer is homogeneous is considered throughout. The strength of the stratification in the very top layer is chosen to be sufficient so that waves of depression with trapped cores can be generated. The flow is assumed to satisfy the Dubriel-Jacotin-Long equation both inside and outside of the core region. The Brunt-Vaisala frequency is modelled such that it varies from a constant value outside of the core to zero inside the core over a sharp but continuous transition length. This results in a stagnant core in which the vorticity is zero and the density is homogeneous and approximately equal to that at the core boundary. The time dependent simulations show that instability occurs on the boundary of the core. The instability takes the form of Kelvin-Helmholtz billows. If the instability in the vorticity field is energetic enough, disturbance in the buoyancy field is also seen and fluid exchange takes place across the core boundary. Occurrence of the Kelvin-Helmholtz billows is attributed to the sharp change in the vorticity field at the boundary between the core and the pycnocline. The numerical scheme is not limited by small Richardson number unlike the other alternatives currently available in the literature which appear to be.

1.
J. R.
Apel
,
L. A.
Ostrovsky
,
Y. A.
Stepanyants
, and
J. F.
Lynch
, “
Internal solitons in the ocean
,” Techinical Report,
Woods Hole Oceanog. Inst.
, WHOI-2006-04
2006
).
2.
J.
Grue
,
“Waves in geophysical fluids-tsunamis, rogue waves, internal waves and internal tides
,” 1st ed. (
Springer
,
New York
,
2006
), pp.
205
270
.
3.
K. R.
Helfrich
and
W. K.
Melville
, “
Long nonlinear internal waves
,”
Annu. Rev. Fluid. Mech.
38
,
395
(
2006
).
4.
J. R.
Apel
,
L. A.
Ostrovsky
,
Y. A.
Stepanyants
, and
J. F.
Lynch
, “
Internal solitons in the ocean and their effect on underwater sound
,”
J. Acoust. Soc. Am.
121
,
695
(
2007
).
5.
T. P.
Stanton
and
L. A.
Ostrovsky
, “
Observations of highly nonlinear internal solitons over the continental shelf
,”
Geophys. Res. Lett.
25
(
14
),
2695
, doi: (
1998
).
6.
M. H.
Orr
and
P. C.
Mignerey
, “
Nonlinear internal waves in the South China Sea: Observation of the conversion of a depression internal waves to elevation internal waves
,”
J. Geophys. Res.
108
,
3064
, doi: (
2003
).
7.
T. F.
Duda
,
J. F.
Lynch
,
J. D.
Irish
,
R. C.
Beardsley
,
S. R.
Ramp
,
C.-S.
Chiu
,
T. Y.
Tang
, and
Y. J.
Yang
, “
Internal tide and nonlinear internal wave behavior at the continental slope in the northern South China Sea
,”
IEEE J. Ocean. Eng.
29
,
1105
(
2004
).
8.
J. M.
Klymak
and
J. N.
Moum
, “
Internal solitary waves of elevation advancing on a shoaling shelf
,”
Geophys. Res. Lett.
30
,
2045
, doi: (
2003
).
9.
A.
Scotti
and
J.
Pineda
, “
Observation of very large and steep internal waves of elevation near the Massachusetts coast
,”
Geophys. Res. Lett.
31
,
L22307
, doi: (
2004
).
10.
R. H.
Clarke
,
R. K.
Smith
, and
D. G.
Reid
, “
The Morning Glory of the Gulf of Carpentaria: An atmospheric undular bore
,”
Mon. Weather Rev.
109
,
1726
(
1981
).
11.
R. J.
Doviak
and
D. R.
Christie
, “
Thunderstorm-generated solitary waves: A wind shear hazard
,”
J. Aircr.
26
,
423
(
1989
).
12.
T. K.
Cheung
and
C. G.
Little
, “
Meterological tower, microbarograph array, and sodar observations of solitary-like waves in the nocturnal boundary layer
,”
J. Atmos. Sci.
47
,
2516
(
1990
).
13.
J.
Grue
,
A.
Jensen
,
P.-O.
Rusas
,
P.-O.
and
J. K.
Sveen
, “
Breaking and broadening of internal solitary waves
,”
J. Fluid Mech.
413
,
181
(
2000
).
14.
M.
Carr
,
D.
Fructus
,
J.
Grue
,
A.
Jensen
, and
P. A.
Davies
, “
Convectively induced shear instability in large amplitude internal solitary waves
,”
Phys. Fluids
20
,
12660
(
2008
).
15.
R. E.
Davis
and
A.
Acrivos
, “
Solitary internal waves in deep water
,”
J. Fluid Mech.
29
(
3
),
593
(
1967
).
16.
O. G.
Derzho
and
R.
Grimshaw
, “
Solitary waves with a vortex core in a shallow layer of stratified fluid
,”
Phys. Fluids
9
,
3378
(
1997
).
17.
D. J.
Brown
and
D. R.
Christie
, “
Fully nonlinear solitary waves in continuously stratified incompressible Boussinesq fluids
,”
Phys. Fluids
10
(
10
),
2569
(
1998
).
18.
A.
Aigner
,
D.
Broutman
, and
R.
Grimshaw
, “
Numerical simulations of internal solitary waves with vortex cores
,”
Fluid Dyn. Res.
25
,
315
(
1999
).
19.
M.
Stastna
and
K. G.
Lamb
, “
Internal solitary-like waves with recirculating cores
,” in
Proceedings of the 5th International Symposium on Stratified Flows
, edited by
G.
Lawerence
,
N.
Yonemitsu
, and
R.
Pieters
(
2000
), p.
821
.
20.
K. G.
Lamb
, “
A numerical investigation of solitary internal waves with trapped cores formed via shoaling
,”
J. Fluid Mech.
451
,
109
(
2002
).
21.
K. G.
Lamb
and
K. P.
Wilkie
, “
Conjugate flows for waves with trapped cores
,”
Phys. Fluids
16
(
12
),
4685
(
2004
).
22.
D.
Fructus
and
J.
Grue
, “
Fully nonlinear solitary waves in a layered stratified fluid
,”
J. Fluid Mech.
505
,
323
(
2004
).
23.
K. R.
Helfrich
and
B. L.
White
, “
A model for large-amplitude internal solitary waves with trapped cores
,”
Nonlinear. Processes Geophys.
17
,
303
(
2010
).
24.
S. E.
King
,
M.
Carr
, and
D. G.
Dritschel
, “
The steady state form of large amplitude internal solitary waves
,”
J. Fluid Mech.
666
,
477
(
2010
).
25.
N.
Soontiens
,
C.
Subich
, and
M.
Stastna
, “
Numerical simulation of supercritical trapped internal waves over topography
,”
Phys. Fluids
22
,
116605
(
2011
).
26.
L.
Dubreil-Jacotin
, “
Sur la determination rigoureuse des ondes permantentes peri-odiques d’ amplitude finite
,”
J. Math. Pure Appl.
13
,
217
(
1934
).
27.
R. R.
Long
, “
Some aspects of the flow of stratified fluids, I.A theoretical investigation
,”
Tellus
5
,
42
(
1953
).
28.
J.
Pineda
, “
Circulation and larval distribution in internal tidal bore warm fronts
,”
Limnol. Oceanogr.
44
,
1400
(
1999
).
29.
K. R.
Helfrich
and
J.
Pineda
, “
Accumulation of particles in propagating fronts
,”
Limnol. Oceanogr.
48
,
1509
(
2003
).
30.
B.
Turkington
,
A.
Eydeland
, and
S.
Wang
, “
A computational method for solitary internal waves in a continuously stratified fluid
,”
Stud. Appl. Math.
85
,
93
(
1991
).
31.
K. G.
Lamb
and
D.
Farmer
, “
Instabilities in an internal solitary-like wave on the Oregeon shelf
,”
J. Phys. Oceanogr.
41
,
67
(
2011
).
32.
D. G.
Dritschel
and
J.
Fontane
, “
The combined Lagrangian advection method
,”
J. Comput. Phys.
229
,
5408
(
2010
).
33.
D. G.
Dritschel
and
R. K.
Scott
, “
On the simulation of nearly inviscid two-dimensional turbulence
,”
J. Comput. Phys.
228
,
2707
(
2009
).
34.
J.
Fontane
and
D. G.
Dritschel
, “
The HyperCASL algorithm: A new approach to the numerical simulation of geophysical flows
,”
J. Comput. Phys.
228
,
6411
(
2009
).
35.
M.
Carr
,
S. E.
King
, and
D. G.
Dritschel
, “
Numerical simulation of shear-induced instabilities in internal solitary waves
,”
J. Fluid Mech.
683
,
263
(
2011
).
36.
C.-S.
Yih
and
C.-S
, “
Exact solutions for steady two-dimensional flow of a stratified fluid
,”
J. Fluid Mech.
9
,
161
(
1960
).
37.
D. G.
Dritschel
and
M. H. P.
Ambaum
, “
A contour-advective semi-Lagrangian numerical algorithm for simulating fine-scale conservative dynamical fields
,”
Q. J. R. Meteorol. Soc.
123
,
1097
(
1997
).
38.
See supplementary material at http://dx.doi.org/10.1063/1.3673612 for movies 1–9.

Supplementary Material

You do not currently have access to this content.