This paper addresses one of the most persistent errors in wall-modeled large eddy simulation: the inevitable presence of numerical and subgrid modeling errors in the first few grid points off the wall, which leads to the so-called “log-layer mismatch” with its associated 10-15% error in the predicted skin friction. By considering the behavior of turbulence length scales near a wall, the source of these errors is analyzed, and a method that allows for the log-layer mismatch to be removed, thereby yielding accurately predicted skin friction, is proposed.

1.
U.
Piomelli
and
E.
Balaras
, “
Wall-layer models for large-eddy simulations
,”
Annu. Rev. Fluid Mech.
34
,
349
(
2002
).
2.
P. R.
Spalart
, “
Detached-eddy simulation
,”
Annu. Rev. Fluid Mech.
41
,
181
(
2009
).
3.
N. V.
Nikitin
,
F.
Nicoud
,
B.
Wasistho
,
K. D.
Squires
, and
P. R.
Spalart
, “
An approach to wall modeling in large-eddy simulations
,”
Phys. Fluids
12
,
1629
(
2000
).
4.
J.
Larsson
,
F. S.
Lien
, and
E.
Yee
, “
Feedback-controlled forcing in hybrid LES/RANS
,”
Int. J. Comput. Fluid Dyn.
20
,
687
(
2006
).
5.
U.
Piomelli
,
E.
Balaras
,
H.
Pasinato
,
K. D.
Squires
, and
P. R.
Spalart
, “
The inner-outer layer interface in large-eddy simulations with wall-layer models
,”
Int. J. Heat Fluid Flow
24
,
538
(
2003
).
6.
M. L.
Shur
,
P. R.
Spalart
,
M.
Kh. Strelets
, and
A. K.
Travin
, “
A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities
,”
Int. J. Heat Fluid Flow
29
,
1638
(
2008
).
7.
J. E.
Brasseur
and
T.
Wei
, “
Designing large-eddy simulation of the turbulent boundary layer to capture law-of-the-wall scaling
,”
Phys. Fluids
22
,
021303
(
2010
).
8.
W.
Cabot
and
P.
Moin
, “
Approximate wall boundary conditions in the large-eddy simulation of high Reynolds number flow
,”
Flow, Turbul. Combust.
63
,
269
(
1999
).
9.
U.
Schumann
, “
Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli
,”
J. Comput. Phys.
18
,
376
(
1975
).
10.
E.
Balaras
,
C.
Benocci
, and
U.
Piomelli
, “
Two-layer approximate boundary conditions for large-eddy simulations
,”
AIAA J.
34
,
1111
(
1996
).
11.
F.
Nicoud
,
J. S.
Baggett
,
P.
Moin
, and
W.
Cabot
, “
Large eddy simulation wall-modeling based on suboptimal control theory and linear stochastic estimation
,”
Phys. Fluids
13
,
2968
(
2001
).
12.
C.
Pantano
,
D. I.
Pullin
,
P. E.
Dimotakis
, and
G.
Matheou
, “
LES approach for high Reynolds number wall-bounded flows with application to turbulent channel flow
,”
J. Comput. Phys.
227
,
9271
(
2008
).
13.
P.
Moin
,
K.
Squires
,
W.
Cabot
, and
S.
Lee
, “
A dynamic subgrid-scale model for compressible turbulence and scalar transport
,”
Phys. Fluids A
3
,
2746
(
1991
).
14.
D. K.
Lilly
, “
A proposed modification of the Germano subgrid-scale closure method
,”
Phys. Fluids A
4
,
633
(
1992
).
15.
S. K.
Lele
, “
Compact finite difference schemes with spectral-like resolution
,”
J. Comput. Phys.
103
,
16
(
1992
).
16.
D. V.
Gaitonde
and
M. R.
Visbal
, “
Padé-type higher-order boundary filters for the Navier-Stokes equations
,”
AIAA J.
38
,
2103
(
2000
).
17.
D. P.
Rizzetta
,
M. R.
Visbal
, and
G. A.
Blaisdell
, “
A time-implicit high-order compact differencing and filtering scheme for large-eddy simulation
,”
Int. J. Numer. Methods Fluids
42
,
665
(
2003
).
18.
S.
Kawai
and
S. K.
Lele
, “
Localized artificial diffusivity scheme for discontinuity capturing on curvilinear meshes
,”
J. Comput. Phys.
227
,
9498
(
2008
).
19.
S.
Kawai
,
S. K.
Shankar
, and
S. K.
Lele
, “
Assessment of localized artificial diffusivity scheme for large-eddy simulation of compressible turbulent flows
,”
J. Comput. Phys.
229
,
1739
(
2010
).
20.
S.
Kawai
and
S. K.
Lele
, “
Large-eddy simulation of jet mixing in supersonic crossflows
,”
AIAA J.
48
,
2063
(
2010
).
21.
G.
Urbin
and
D.
Knight
, “
Large-eddy simulation of a supersonic boundary layer using an unstructured grid
,”
AIAA J
.
39
,
1288
(
2001
).
22.
B.
Morgan
,
J.
Larsson
,
S.
Kawai
, and
S. K.
Lele
, “
Improving the low-frequency characteristics of recycling/rescaling inflow turbulence generation
,”
AIAA J.
49
,
582
(
2011
).
23.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
, UK,
2000
).
24.
S. T.
Bose
,
P.
Moin
, and
D.
You
, “
Grid-independent large-eddy simulation using explicit filtering
,”
Phys. Fluids
22
,
105103
(
2010
).
25.
L. J.
Souverein
,
P.
Dupont
,
J. F.
Debieve
,
J. P.
Dussauge
,
B. W.
van Oudheusden
, and
F.
Scarano
, “
Effect of interaction strength on unsteadiness in turbulent shock-wave-induced separations
,”
AIAA J.
48
,
1480
(
2010
).
26.
L. J.
Souverein
, “
On the scaling and unsteadiness of shock induced separation
,",” Ph.D. dissertation (
Delft University of Technology
,
2010
).
27.
D. B.
DeGraaff
and
J. K.
Eaton
, “
Reynolds-number scaling of the flat-plate turbulent boundary layer
,”
J. Fluid Mech.
422
,
319
(
2000
).
28.
S.
Pirozzoli
,
F.
Grasso
, and
T. B.
Gatski
, “
Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M = 2.25
,”
Phys. Fluids
16
,
530
(
2004
).
29.
E. J.
Hopkins
and
M.
Inouye
, “
An evaluation of theories for predicting turbulent skin friction and heat transfer on flat plates at supersonic and hypersonic mach numbers
,”
AIAA J.
9
,
993
(
1971
).
You do not currently have access to this content.