Negative Magnus lift acting on a sphere rotating about the axis perpendicular to an incoming flow was investigated using large-eddy simulation at three Reynolds numbers of 1.0 × 104, 2.0 × 105, and 1.14 × 106. The numerical methods used were first validated on a non-rotating sphere, and the spatial resolution around the sphere was determined so as to reproduce the laminar separation, reattachment, and turbulent transition of the boundary layer observed in the vicinity of the critical Reynolds number. The rotating sphere exhibited a positive or negative Magnus effect depending on the Reynolds number and the imposed rotating speed. At Reynolds numbers in the subcritical or supercritical regimes, the direction of the Magnus lift force was independent of the rotational speed. In contrast, the lift force was negative in the critical regime when particular rotating speeds were imposed. This negative Magnus effect was investigated in the context of suppression or promotion of boundary layer transition around the separation point.

1.
G.
Magnus
, “
Über die Abweichung der Geschosse, und: Über eine abfallende Erscheinung bei rotierenden Körpern
,”
Poggendorff’s Ann. Phys. Chem.
164
,
1
(
1853
).
2.
S.
Taneda
, “
Negative magnus effect
,”
Rep. Res. Inst. Appl. Mech.
5
(
20
),
123
(
1957
).
3.
J. H.
Maccoll
, “
Aerodynamics of a spinning Sphere
,”
J. R. Aeronaut. Soc.
28
,
777
(
1928
).
4.
J. M.
Davies
, “
The aerodynamics of golf balls
,”
J. Appl. Phys.
20
,
821
(
1949
).
5.
E.
Achenbach
, “
Experiments on the flow past spheres at very high Reynolds numbers
,”
J. Fluid Mech.
54
,
565
(
1972
).
6.
M.
Germano
,
U.
Piomelli
,
P.
Moin
, and
W. H.
Cabot
, “
A dynamic subgrid-scale eddy viscosity model
,”
Phys. Fluids A
3
(
7
),
1760
(
1991
).
7.
D. K.
Lilly
, “
A proposed modification of the Germano subgrid-scale closure method
,”
Phys. Fluids A
4
(
4
),
633
(
1992
).
8.
G.
Constantinescu
and
K.
Squires
, “
LES and DES investigation of turbulent flow over a sphere at Re = 10 000
,”
Flow, Turbul. Combust.
70
,
267
(
2003
).
9.
G.
Constantinescu
,
M.
Chapelet
, and
K.
Squires
, “
Turbulence modeling applied to flow over a sphere
,”
AIAA J.
41
,
1733
(
2003
).
10.
G.
Constantinescu
and
K.
Squires
, “
Numerical investigations of flow over a sphere in the subcritical and supercritical regimes
,”
Phys. Fluids
16
(
5
),
1449
(
2004
).
11.
G.
Yun
,
D.
Kim
, and
H.
Choi
, “
Vortical structures behind a sphere at subcritical Reynolds numbers
,”
Phys. Fluids
18
,
015102
(
2006
).
12.
K.
Mahesh
,
G.
Constantinescu
, and
P.
Moin
, “
A numerical method for large-eddy simulation in complex geometries
,”
J. Comput. Phys.
197
,
215
(
2004
).
13.
S.
Muzaferija
, “
Adaptive finite volume method for flow prediction using unstructured meshes and multigrid approach
,” Ph.D. dissertation (
University of London
,
1994
).
14.
J.
Kim
and
P.
Moin
, “
Application of a fractional-step method to incompressible Navier-Stokes equations
,”
J. Comput. Phys.
59
,
308
(
1985
).
15.
A. A.
Amsden
and
F. H.
Harlow
, “
A simplified MAC technique for incompressible fluid flow calculations
,”
J. Comput. Phys.
6
,
322
(
1970
).
16.
C. M.
Rhie
and
W. L.
Chow
, “
Numerical study of the turbulent flow past an airfoil with trailing edge separation
,”
AIAA J.
21
,
1525
(
1983
).
17.
H.
Schlichting
,
Boundary Layer Theory
(
McGraw-Hill
,
New York
,
1955
).
18.
C.
Wieselsberger
, “
Weitere Feststellungen uber die Gesetze des Flussigkeits und Luftwiderstandes
,”
Phys. Z.
23
,
219
(
1922
).
19.
G. K.
Suryanarayana
and
E. A.
Meier
, “
Effect of ventilation on the flow field around a sphere
,”
Exp. Fluids
19
,
78
(
1995
).
20.
A.
Fage
, “
Experiments on a sphere at critical Reynolds numbers
,” Aeronautical Research Council, Reports and Memoranda No. 1766 (
Her Majesty’s Stationery Office
, London,
1936
).
21.
Y.
Tsuji
,
Y.
Morikawa
, and
O.
Mizuno
, “
Experimental measurement of the magnus force on a rotating sphere at low Reynolds numbers
,”
J. Fluids Eng.
107
,
484
(
1985
).
22.
S.
Taneda
, “
Visual observations of the flow past a sphere at Reynolds numbers between 104 and 106
,”
J. Fluid Mech.
85
,
187
(
1978
).
You do not currently have access to this content.