The flow past one or nine spheres arranged in a plane lattice held fixed in a stream of decaying homogeneous isotropic turbulence is studied by means of fully resolved Navier-Stokes simulations. The particle radius is 3–5 times the Kolmogorov length and about 1/3 of the integral length scale. The mean particle Reynolds number is 80 and the turbulence intensity 17% and 33%. Several features of the flow are described: the mean and fluctuating dissipation and its spatial distribution, the mean and fluctuating hydrodynamic forces on the spheres, stimulated vortex shedding, and others. A special attention is paid to the relation between the work done on the fluid by the particles (in the reference frame of the former) and the total dissipation. It is shown that these quantities, which are assumed to balance in many point-particle models, can actually be very different when inertial effects are important.

1.
W.
Hwang
and
J. K.
Eaton
,
“Homogeneous and isotropic turbulence modulation by small heavy (St ∼ 50) particles
,”
J. Fluid Mech.
564
,
361
(
2006
).
2.
A.
Ferrante
and
S.
Elghobashi
,
“On the physical mechanism of two-way coupling in particle laden isotropic turbulence
,”
Phys. Fluids
15
,
315
(
2003
).
3.
S.
Elghobashi
,
“An updated classification map of particle-laden flows,”
in
Proceedings of the IUTAM Symposium on Computational Multiphase Flow
, Fluid Mechanics and its Applications (
Springer
,
New York
,
2006
), Vol.
81
, pp.
3
10
.
4.
S.
Sundaram
and
L. R.
Collins
,
“Collision statistics in an isotropic particle-laden turbulent suspension. Part 1. Direct numerical simulations,”
J. Fluid Mech.
335
,
75
(
1997
).
5.
L. I.
Zaichik
,
O.
Simonin
, and
V. M.
Alipchenkov
,
“Collision rates of bidisperse inertial particles in isotropic turbulence
,”
Phys. Fluids
18
,
035110
(
2006
).
6.
K. D.
Squires
and
J. K.
Eaton
,
“Preferential concentration of particles by turbulence
,”
Phys. Fluids
3
,
1169
(
1991
).
7.
J.
Bec
,
“Fractal clustering of inertial particles in random flows,”
Phys. Fluids
15
,
L81
(
2003
).
8.
R. A.
Gore
and
C. T.
Crowe
,
“Effect of particle size on modulating turbulent intensity,”
Int. J. Multiphase Flow
15
,
279
(
1989
).
9.
T. M.
Burton
and
J. K.
Eaton
,
“Fully resolved simulations of particle-turbulence interaction
,”
J. Fluid Mech.
545
,
67
(
2005
).
10.
Z.
Amoura
,
V.
Roig
,
F.
Risso
, and
A.-M.
Billet
,
“Attenuation of the wake of a sphere in an intense incident turbulence with large length scales
,”
Phys. Fluids
22
,
055105
(
2010
).
11.
A.
Naso
and
A.
Prosperetti
,
“The interaction between a solid particle and a turbulent flow
,”
New J. Phys.
12
,
033040
(
2010
).
12.
J. M.
Yusof
,
“Interaction of massive particles with turbulence,”
Ph.D. thesis (
Cornell University
,
1996
).
13.
P.
Bagchi
and
S.
Balachandar
,
“Response of the wake of an isolated particle to an isotropic turbulent flow,”
J. Fluid Mech.
518
,
95
(
2004
).
14.
J.-S.
Wu
and
G. M.
Faeth
,
“Sphere wakes at moderate Reynolds numbers in a turbulent environment,”
AIAA J.
32
,
535
(
1994
).
15.
J.-S.
Wu
and
G. M.
Faeth
,
“Effect of ambient turbulence intensity on sphere wakes at intermediate Reynolds numbers,”
AIAA J.
33
,
171
(
1994
).
16.
S.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
Cambridge, UK
,
2000
).
17.
M. S.
Uberoi
and
P.
Freymuth
,
“Turbulent energy balance and spectra of the axisymmetric wake,”
Phys. Fluids
13
,
2205
(
1970
).
18.
J.-H.
Chen
,
“Turbulence generation in homogeneous dilute particle-laden flows,”
Ph.D. thesis (
University of Michigan
,
1999
).
19.
P.
Bagchi
,
“Particle dynamics in inhomogeneous flows at moderate-to-high Reynolds number,”
Ph.D. thesis (
University of Illinois
, Urbana, IL,
2002
).
20.
A.
ten Cate
,
J. J.
Derksen
,
L. M.
Portela
, and
H. E. A.
van den Akker
,
“Fully resolved simulations of colliding monodisperse spheres in forced isotropic turbulence,”
J. Fluid Mech.
519
,
233
(
2004
).
21.
M.
Uhlmann
,
“Interface-resolved direct numerical simulation of vertical particulate channel flow in the turbulent regime,”
Phys. Fluids
20
,
053305
(
2008
).
22.
F.
Lucci
,
A.
Ferrante
, and
S.
Elghobashi
,
“Modulation of isotropic turbulence by particles of Taylor length-scale size,”
J. Fluid Mech.
650
,
5
(
2010
).
23.
S.
Takagi
,
H. Z. Z.
Oguz
, and
A.
Prosperetti
,
“Physalis: a new method for particle simulations. Part II: Two-dimensional Navier-Stokes flow around cylinders,”
J. Comput. Phys.
187
(
2
),
371
(
2003
).
24.
Z.
Zhang
and
A.
Prosperetti
,
“A method for particle simulation,”
J. Appl. Mech.
70
,
64
(
2003
).
25.
Z.
Zhang
and
A.
Prosperetti
,
“A second-order method for three-dimensional particle simulation,”
J. Comput. Phys.
210
,
292
(
2005
).
26.
H.
Lamb
,
Hydrodynamics
, 6th ed. (
Cambridge University Press
,
Cambridge, UK
,
1993
).
27.
S.
Kim
and
S. J.
Karrila
,
Microhydrodynamics: Principles and Selected Applications
(
Dover
,
New York
,
2005
).
28.
Z.
Zhang
,
L.
Botto
, and
A.
Prosperetti
,
“Microstructural effects in a fully resolved simulation of 1024 sedimenting spheres,”
in
IUTAM Symposium on Computational Approaches to Multiphase Flow
,
Fluid Mechanics and its Applications
, Vol.
81
,
The Netherlands
(Springer,
2006
).
29.
J. J.
Bluemink
,
D.
Lohse
,
A.
Prosperetti
, and
L.
Van Wijngaarden
,
“A sphere in a uniformly rotating or shearing flow,”
J. Fluid Mech.
600
,
201
(
2008
).
30.
L.
Botto
,
“Numerical simulation of extended particles in a fluid flow,”
Ph.D. thesis (
Johns Hopkins University
,
2009
).
31.
S.
Lundgren
,
“Linearly forced isotropic turbulence,”
Annual Research Briefs. Technical report, Center for Turbulence Research, Stanford University,
2003
.
32.
C.
Rosales
and
C.
Meneveau
,
“Linear forcing in numerical simulations of isotropic turbulence: Physical space implementations and convergence properties,”
Phys. Fluids
17
,
095106
(
2005
).
33.
P.
Bagchi
and
S.
Balachandar
,
“Effect of turbulence on the drag and lift of a particle,”
Phys. Fluids
15
,
3496
(
2003
).
34.
R. N.
Parthasarathy
and
G. M.
Faeth
,
“Turbulence modulation in homogeneous dilute particle-laden flows,”
J. Fluid Mech.
220
,
485
(
1990
).
35.
J. D.
Kulick
,
J. R.
Fessler
, and
J. K.
Eaton
,
“Particle response and turbulence modification in fully developed channel flow,”
J. Fluid Mech.
277
,
109
(
1994
).
36.
Y.
Sato
and
K.
Hishida
,
“Transport process of turbulent energy in particle-laden turbulent flow,”
Int. J. Heat Fluid Flow
17
(
3
),
202
(
1996
).
37.
C.
Poelma
,
J.
Westerweel
, and
G.
Ooms
,
“Particle-fluid interactions in grid-generated turbulence,”
J. Fluid Mech.
589
,
315
(
2007
).
38.
R.
Natarajan
and
A.
Acrivos
,
“The instability of the steady flow past spheres and disks,”
J. Fluid Mech.
254
,
323
(
1993
).
39.
Computational Methods in Multiphase Flow
, edited by
A.
Prosperetti
and
G.
Tryggvason
(
Cambridge University Press
,
Cambridge, UK
,
2009
), paperback edition.
40.
D.
Legendre
,
A.
Merle
, and
J.
Magnaudet
,
“Wake of a spherical bubble or a solid sphere set fixed in a turbulent environment,”
Phys. Fluids
18
,
048102
(
2006
).
41.
G. K.
Batchelor
,
An Introduction to Fluid Mechanics
(
Cambridge University Press
,
Cambridge, UK
,
1967
).
42.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
(
Pergamon
,
London, UK
,
1987
).
43.
K. T.
Kiger
and
J. C.
Lasheras
,
“Dissipation due to particle/turbulence interaction in a two-phase, turbulent, shear layer,”
Phys. Fluids
9
,
3005
(
1997
).
44.
R.
Mittal
,
“Response of the sphere wake to freestream fluctuations,”
Theor. Comput. Fluid Dyn.
13
,
397
(
2000
).
45.
B.
Ghidersa
and
J.
Dusek
,
“Breaking of axisymmetry and onset of unsteadiness in the wake of a sphere,”
J. Fluid Mech.
423
,
33
(
2000
).
46.
M.
Jenny
,
J.
Dusek
, and
G.
Bouchet
,
“Instabilities and transition of a sphere falling or ascending freely in a Newtonian fluid,”
J. Fluid Mech.
508
,
201
(
2004
).
47.
J. C. R.
Hunt
and
I.
Eames
,
“The disappearance of laminar and turbulent wakes in complex flows,”
J. Fluid. Mech.
457
,
111
(
2002
).
You do not currently have access to this content.