Direct numerical simulations of particles in a serpentine duct were conducted at bulk flow Stokes numbers between 0.125 and 6. The geometrical curvature causes particles to depart direction from the mean flow. Above a Stokes number of about unity, a reflection layer forms along the outer curve of the bend. Reflectional mixing creates regions of nearly uniform particle mean velocity and kinetic energy. Particles leave the inner bend in a plume that separates from the inner wall at low Stokes number. At higher Stokes number, the plume splits in two, adding an upper part consisting of ballistic particles, that do not follow the geometrical curvature. When the Stokes number is low, the instantaneous 3-D distribution of particles visualizes wall streaks. But at higher Stokes number, particles disperse out of the reflection layer and form large scale puffs in the central portion of the duct.

1.
G. M.
Laskowski
and
P. A.
Durbin
, “
Direct numerical simulations of turbulent flow through a stationary and rotating infinite serpentine passage
,”
Phys. Fluids
19
,
015101
(
2007
).
2.
C.
Marchioli
,
A.
Soldati
,
J.
Kuerten
,
B.
Arcen
,
A.
Taniére
,
G.
Goldensoph
,
K.
Squires
,
M.
Cargnelutti
, and
L.
Portela
, “
Statistics of particle dispersion in direct numerical simulations of wall-bounded turbulence: Results of an international collaborative benchmark test
,”
Int. J. Multiphase Flow
34
,
879
(
2008
).
3.
M.
Breuer
,
H.
Baytekin
, and
E.
Matida
, “
Prediction of aerosol deposition in 90° bends using LES and an efficient Lagrangian tracking method
,”
J. Aerosol Sci.
37
,
1407
(
2006
).
4.
A. S.
Berrouk
and
D.
Laurence
, “
Stochastic modelling of aerosol deposition for LES of 90° bend turbulent flow
,”
Int. J. Heat Fluid Flow
29
,
1010
(
2008
).
5.
J. K.
Edwards
,
B. S.
McLaury
, and
S. A.
Shirazi
, “
Modeling solid particle erosion in elbows and plugged tees
,”
J. Energy Resour. Technol.
123
,
277
(
2001
).
6.
X.
Huang
and
P.
Durbin
, “
Particulate dispersion in a turbulent serpentine channel
,”
Flow, Turbul. Combust.
85
,
333
(
2010
).
7.
M.
Caporaloni
,
F.
Tampieri
,
F.
Trombetti
, and
O.
Vittori
, “
Transfer of particles in non-isotropic air turbulence
,”
J. Atmos. Sci.
32
,
565
(
1975
).
8.
M. W.
Reeks
, “
Transport of discrete particles in inhomogeneous turbulence
,”
J. Aerosol Sci.
14
,
729
(
1983
).
9.
Q.
Wang
and
K. D.
Squires
, “
Large eddy simulation of particle laden turbulent channel flow
,”
Phys. Fluids
8
,
1207
(
1996
).
10.
D. W. I.
Rouson
and
K. J.
Eaton
, “
On the preferential concentration of solid particles in turbulent channel flow
,”
J. Fluid Mech.
428
,
149
(
2001
).
11.
C.
Marchioli
and
A.
Soldati
, “
Mechanism for particle transfer and segregation in a turbulent boundary layer
,”
J. Fluid Mech.
468
,
283
(
2002
).
12.
G. M.
Laskowski
, “
Inverse design of a turbine cascade passage and DNS of a stationary and rotating serpentine passage
,” Ph.D. dissertation (
Stanford University
,
2004
).
13.
X.
Huang
, “
Particulate dispersion in a serpentine channel
,” Ph.D. dissertation (
Iowa State University
,
2011
).
14.
A.
Forder
,
M.
Thew
, and
D.
Harrison
,
Wear
216
,
184
(
1998
).
15.
J.
Young
and
A.
Leeming
, “
A theory of particle deposition in turbulent pipe flow
,”
J. Fluid Mech.
240
,
129
(
1997
).
16.
O.
Desjardins
,
R. O.
Fox
, and
P.
Villedieu
, “
A quadrature-based moment method for dilute fluid-particle flows
,”
J. Comput. Phys.
227
,
2514
(
2008
).
You do not currently have access to this content.