Non-spherical particles are common in colloidal science. Spheroidal shapes are particularly convenient for the analysis of the pertinent electrostatic and hydrodynamic problems and are thus widely used to model the manipulation of biological cells as well as deformed drops and bubbles. We study the rotary motion of a dielectric spheroidal micro-particle which is freely suspended in an unbounded electrolyte solution in the presence of a uniform applied electric field, assuming a thin Debye layer. For the common case of a uniform distribution of the native surface-charge density, the rotary motion of the particle is generated by the contributions of the induced-charge electro-osmotic (ICEO) slip and the dielectrophoresis associated with the distribution of the Maxwell stress, respectively. Series solutions are obtained by using spheroidal (prolate or oblate) coordinates. Explicit results are presented for the angular velocity of particles spanning the entire spectrum from rod-like to disk-like shapes. These results demonstrate the non-monotonic variation of the angular speed with the eccentricity of particle shape and the singularity of the multiple limits corresponding to conducting (ideally polarizable) particles of extreme eccentricity (e ≈ 1). The non-monotonic variation of the angular speed with the particle dielectric permittivity is related to the induced-charge contribution. We apply these results to describe the motion of particles subject to a uniform field rotating in the plane. For a sufficiently slow rotation rate, prolate particles eventually become “locked” to the external field with their stationary relative orientation in the plane of rotation being determined by the particle eccentricity and dielectric constant. This effect may be of potential use in the manipulation of poly-disperse suspensions of dielectric non-spherical particles. Oblate spheroids invariably approach a uniform orientation with their symmetry axes directed normal to the external-field plane of rotation.

1.
P. R. C.
Gascoyne
and
J.
Vykoukal
, “
Particle separation by dielectrophoresis
,”
Electrophoresis
,
23
,
1973
(
2002
).
2.
N. G.
Green
,
A.
Ramos
, and
H.
Morgan
, “
Ac electrokinetics: a survey of sub-micrometre particle dynamics
,”
J. Phys. D: Appl. Phys.
33
,
632
(
2000
).
3.
G.
De Gasperis
,
X. B.
Wang
,
J.
Yang
,
F. F.
Becker
, and
P. R. C.
Gascoyne
, “
Automated electrorotation: dielectric characterization of living cells by real-time motion estimation
,”
Meas. Sci. Tech.
9
,
518
(
1998
).
4.
X.
Duan
,
Y.
Huang
,
Y.
Cui
,
J.
Wang
, and
C. M.
Lieber
, “
Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices
,”
Nature
409
,
66
(
2001
).
5.
S.-Y.
Teh
,
R.
Lin
,
L.-H.
Hung
, and
A. P.
Lee
, “
Droplet microfluidics
,”
Lab Chip
8
,
198
(
2008
).
6.
M.
Parthasarathy
and
D. J.
Klingenberg
, “
Electrorheology: mechanisms and models
,”
Mater. Sci. Eng.
RI7
,
57
(
1996
).
7.
Y.
Solomentsev
and
J. L.
Anderson
, “
Electrophoresis of slender particles
,”
J. Fluid Mech.
279
,
197
(
1994
).
8.
M. C.
Fair
and
J. L.
Anderson
, “
Electrophoresis of nonuniformly charged ellipsoidal particles
,”
J. Colloid Interface Sci.
127
,
388
(
1989
).
9.
S. S.
Dukhin
and
V. N.
Shilov
, “
Kinetic aspects of electrochemistry of disperse systems. Part II. Induced dipole moment and the non-equilibrium double layer of a colloid particle
,”
Adv. Colloid Interface Sci.
13
,
153
(
1980
).
10.
V. G.
Levich
,
Physicochemical Hydrodynamics
(
Prentice-Hall
,
Englewood Cliffs, NJ
,
1962
).
11.
I. N.
Simonov
and
A. S.
Dukhin
, “
Theory of electrophoresis of solid conducting particles in case of ideal polarization of thin diffuse double layer
,”
Colloid J. USSR
35
,
191
(
1973
).
12.
N. I.
Gamayunov
,
V. A.
Murtsovkin
, and
A. S.
Dukhin
, “
Pair interaction of particles in electric-field. 1. Features of hydrodynamic interaction of polarized particles
,”
Colloid J. USSR
48
,
197
(
1986
).
13.
T. M.
Squires
and
M. Z.
Bazant
, “
Induced-charge electro-osmosis
,”
J. Fluid Mech.
509
,
217
(
2004
).
14.
M. Z.
Bazant
and
T. M.
Squires
, “
Induced-charge electrokinetic phenomena: theory and microfluidic applications
,”
Phys. Rev. Lett.
92
,
066101
1
(
2004
).
15.
D.
Saintillan
,
E.
Darve
, and
E. S. G.
Shaqfeh
, “
Hydrodynamic interactions in the induced-charge electrophoresis of colloidal rod dispersions
,”
J. Fluid Mech.
563
,
223
(
2006
);
D.
Saintillan
,
E. S. G.
Shaqfeh
, and
E.
Darve
, “
Stabilization of a suspension of sedimenting rods by induced-charge electrophoresis
,”
Phys. Fluids
18
,
121701
1
(
2006
).
16.
S.
Gangwal
,
O. J.
Cayre
,
M. Z.
Bazant
, and
O. D.
Velev
, “
Induced-Charge Electrophoresis of Metallodielectric Particles
,”
Phys. Rev. Lett.
100
,
058302
1
(
2008
).
17.
H.
Sugioka
, “
Rotation of a microvalve near conductive electrodes via induced-charge electrophoresis
,”
Phys. Rev. E
83
,
025302
1
(
2011
).
18.
V. N.
Shilov
and
V. P.
Estrela-Lopis
,
Surface Forces in Thin Films and Disperse Systems
(
Consultants Bureau
,
New York
,
1975
).
19.
T.
Miloh
, “
A unified theory of dipolophoresis for nanoparticles
,”
Phys. Fluids
20
,
107105
1
(
2008
).
20.
T.
Miloh
, “
Dipolophoresis of nanoparticles
,”
Phys. Fluids
20
,
063303
1
(
2008
);
T.
Miloh
, “
Dipolophoresis of interacting conducting nano-particles of finite electric double layer thickness
,”
Phys. Fluids
23
,
122002
(
2011
).
21.
H. A.
Pohl
,
Dielectrophoresis
(
Cambridge University Press
,
London
,
1978
).
22.
T. R.
Jones
,
Electromechanics of Particles
(
Cambridge University Press
,
London
,
2005
).
23.
E.
Yariv
, “
Induced-charge electrophoresis of nonspherical particles
,”
Phys. Fluids
17
,
051702
(
2005
).
24.
M.
Squires
and
M. Z.
Bazant
, “
Breaking symmetries in induced-charge electro-osmosis and electrophoresis
,”
J. Fluid Mech.
560
,
65
(
2006
).
25.
K. A.
Rose
,
J. A.
Meier
,
G. M.
Dougherty
, and
J. G.
Santiago
, “
Rotational electrophoresis of striped metallic microrods
,”
Phys. Rev. E.
75
,
011503
(
2007
).
26.
G.
Yossifon
,
I.
Frankel
, and
T.
Miloh
, “
Symmetry breaking in induced-charge electro-osmosis over polarizable spheroids
,”
Phys. Fluids
19
,
068105
(
2007
).
27.
E.
Yariv
, “
Slender-body approximations for electro-phoresis and electro-rotation of polarizable particles
,”
J. Fluid Mech.
613
,
85
94
(
2008
).
28.
L. D.
Landau
and
E. M.
Lifshitz
,
Electrodynamics of Continuous Media
(
Pergamon
,
Oxford
,
1984
).
29.
When employing spheroidal coordinates, it is convenient to take a as one half of the focal distance of the ellipse in a meridional section of the spheroid.
30.
P.
Moon
and
D. E.
Spencer
,
Field Theory Handbook: Including Coordinate Systems Differential Equations and Their Solutions
, 2nd ed. (
Springer
,
Berlin
,
1971
).
31.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables
(
Dover, National Bureau of Standards
,
New York
,
1964
).
32.
I. S.
Gradshteyn
and
I. M.
Ryzhik
,
Table of Integrals, Series and Products
(
Academic
,
New York
,
1965
).
33.
H.
Brenner
, “
Rheology of a dilute suspension of axisymmetric Brownian particles
,”
Int. J. Multiphase Flow
1
,
195
(
1974
).
34.
G.
Yossifon
,
I.
Frankel
, and
T.
Miloh
, “
Macro-scale description of transient electro-kinetic phenomena over polarizable dielectric solids
,”
J. Fluid Mech.
620
,
241
(
2009
).
35.
D. A.
Saville
, “
Electrokinetic effects with small particles
,”
Ann. Rev. Fluid Mech.
9
,
321
(
1977
).
You do not currently have access to this content.