We apply smoothed dissipative particle dynamics (SDPD) [Español and Revenga, Phys. Rev. E 67, 026705 (2003)] to model solid particles in suspension. SDPD is a thermodynamically consistent version of smoothed particle hydrodynamics (SPH) and can be interpreted as a multiscale particle framework linking the macroscopic SPH to the mesoscopic dissipative particle dynamics (DPD) method. Rigid structures of arbitrary shape embedded in the fluid are modeled by frozen particles on which artificial velocities are assigned in order to satisfy exactly the no-slip boundary condition on the solid-liquid interface. The dynamics of the rigid structures is decoupled from the solvent by solving extra equations for the rigid body translational/angular velocities derived from the total drag/torque exerted by the surrounding liquid. The correct scaling of the SDPD thermal fluctuations with the fluid-particle size allows us to describe the behavior of the particle suspension on spatial scales ranging continuously from the diffusion-dominated regime typical of sub-micron-sized objects towards the non-Brownian regime characterizing macro-continuum flow conditions. Extensive tests of the method are performed for the case of two/three dimensional bulk particle-system both in Brownian/non-Brownian environment showing numerical convergence and excellent agreement with analytical theories. Finally, to illustrate the ability of the model to couple with external boundary geometries, the effect of confinement on the diffusional properties of a single sphere within a micro-channel is considered, and the dependence of the diffusion coefficient on the wall-separation distance is evaluated and compared with available analytical results.

1.
J.
Mewis
and
N. J.
Wagner
, “
Current trends in suspension rheology
,”
J. Non-Newtonian Fluid Mech.
157
,
147
(
2009
).
2.
N. J.
Wagner
and
J.
Brady
, “
Shear thickening in colloidal dispersions
,”
Phys. Today
,
62
(
10
),
27
(
2009
).
3.
P.
Tabeling
,
Introduction to Microfluidics
, 2nd ed. (
Oxford University Press
,
Oxford
,
2006
).
4.
G. E.
Karniadakis
and
A.
Beskok
,
Microflows and Nanoflows: Fundamentals and Simulation
(
Springer
,
New York
,
2005
).
5.
M.
Pugia
,
G.
Blankenstein
,
R.
Peters
,
J.
Profitt
,
K.
Kadel
,
T.
Willms
,
R.
Sommer
,
H.
Kuo
, and
L.
Schulman
, “
Microfluidic tool box as technology platform for hand-held diagnostics
,”
Clin. Chem.
51
,
1923
(
2005
).
6.
W. R.
Hwang
,
M. A.
Hulsen
, and
H. E. H.
Meijer
, “
Direct simulation of particle suspensions in sliding bi-periodic frames
,”
J. Comput. Phys.
194
,
742
(
2004
).
7.
R.
Glowinski
,
T.
Pan
,
T.
Hesla
, and
D.
Joseph
, “
A distributed Lagrange multiplier fictitious domain method for particulate flows
,”
Int. J. Multiphase Flow
25
,
755
(
1999
).
8.
N.
Patankar
,
P.
Singh
,
D.
Joseph
,
R.
Glowinski
, and
T.
Pan
, “
A new formulation of the distributed Lagrange multiplier/fictitious domain method for particulate flows
,”
Int. J. Multiphase Flow
26
,
1509
(
2000
).
9.
Y.
Nakayama
and
R.
Yamamoto
, “
Simulation method to resolve hydrodynamic interactions in colloidal dispersions
,”
Phys. Rev. E
71
,
036707
(
2005
).
10.
X.
Luo
,
M. R.
Maxey
, and
G. E.
Karniadakis
, “
Smoothed profile method for particulate flows: Error analysis and simulations
,”
J. Comput. Phys.
228
,
1750
(
2009
).
11.
B. H.
Lin
,
J.
Yu
, and
S. A.
Rice
, “
Direct measurements of constrained Brownian motion of an isolated sphere between two walls
,”
Phys. Rev. E
62
,
3909
(
2000
).
12.
M. D.
Carbajal-Tinoco
,
R.
Lopez-Fernandez
, and
J. L.
Arauz-Lara
, “
Asymmetry in colloidal diffusion near a rigid wall
,”
Phys. Rev. Lett.
99
,
138303
(
2007
).
13.
D.
Ermak
and
J. A.
McCammon
, “
Brownian dynamics with hydrodynamic interactions
,”
J. Chem. Phys.
69
,
1352
(
1978
).
14.
L.
Durlofsky
,
J. F.
Brady
, and
G.
Bossis
, “
Dynamic simulation of hydrodynamically interacting particles
,”
J. Fluid Mech
.
180
,
21
(
1987
).
15.
J. F.
Brady
and
G.
Bossis
, “
Stokesian dynamics
,”
Annu. Rev. Fluid Mech.
20
,
111
(
1988
).
16.
A.
Sierou
and
J. F.
Brady
, “
Accelerated Stokesian dynamics simulations
,”
J. Fluid Mech.
448
,
115
(
2001
).
17.
J. W.
Swan
and
J. F.
Brady
, “
Simulation of hydrodynamically interacting particles near a no-slip boundary
,”
Phys. Fluids
19
,
113306
(
2007
).
18.
R.
Kutteh
, “
Rigid body dynamics approach to Stokesian dynamics simulations of nonspherical particles
,”
J. Chem. Phys.
132
,
174107
(
2010
).
19.
S.
Weinbaum
,
P.
Ganatos
, and
Z.
Yang
, “
Numerical multipole and boundary integral-equation techniques in Stokes-flow
,”
Annu. Rev. Fluid Mech.
22
,
275
(
1990
).
20.
N.
Sharma
and
N. A.
Patankar
, “
Direct numerical simulation of the Brownian motion of particles by using fluctuating hydrodynamic equations
,”
J. Comput. Phys.
201
,
466
(
2004
).
21.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
, 2nd ed. (
Pergamon
,
Oxford
,
1987
).
22.
A. J. C.
Ladd
, “
Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation
,”
J. Fluid Mech.
271
,
285
(
1994
).
23.
A. J. C.
Ladd
and
R.
Verberg
, “
Lattice-Boltzmann simulations of particle-fluid suspensions
,”
J. Stat. Phys.
104
(
5–6
),
1191
(
2001
).
24.
D. L.
Koch
and
A. J. C.
Ladd
, “
Moderate Reynolds number flows through periodic and random arrays of aligned cylinders
,”
J. Fluid Mech.
349
,
31
(
1997
).
25.
M. A.
Van der Hoef
,
R.
Beetstra
, and
J. A. M.
Kuipers
, “
Lattice-Boltzmann simulations of low-Reynolds-number flow past mono- and bidisperse arrays of spheres: Results for the permeability and drag force
,”
J. Fluid Mech.
528
,
233
(
2005
).
26.
C.
Pan
,
L.
Luo
, and
C. T.
Miller
, “
An evaluation of lattice Boltzmann schemes for porous medium flow simulation
,”
Comput. Fluids
35
,
898
(
2006
).
27.
R. S.
Maier
and
R. S.
Bernard
, “
Lattice-Boltzmann accuracy in pore-scale flow simulation
,”
J. Comput. Phys.
229
,
233
(
2010
).
28.
T.
Iwashita
and
R.
Yamamoto
, “
Short-time motion of Brownian particles in a shear flow
,”
Phys. Rev. E
79
,
031401
(
2009
).
29.
T.
Iwashita
and
R.
Yamamoto
, “
Direct numerical simulations for non-Newtonian rheology of concentrated particle dispersions
,”
Phys. Rev. E
80
,
061402
(
2009
).
30.
P. J.
Hoogerbrugge
and
J. M. V. A.
Koelman
, “
Simulating microscopic hydrodynamics phenomena with dissipative particle dynamics
,”
Europhys. Lett.
19
,
155
(
1992
).
31.
P.
Español
and
P.
Warren
, “
Statistical mechanics of dissipative particle dynamics
,”
Europhys. Lett.
30
,
191
(
1995
).
32.
J. M. V. A.
Koelman
and
P. J.
Hoogerbrugge
, “
Dynamic simulations of hard-sphere suspensions under steady shear
,”
Europhys. Lett.
21
,
363
(
1993
).
33.
E. S.
Boek
,
P. V.
Conveney
,
H. N. W.
Lekkerkerker
, and
P.
van der Schoot
, “
Simulating the rheology of dense colloidal suspensions using dissipative particle dynamics
,”
Phys. Rev. E
55
,
3124
(
1997
).
34.
N. S.
Martys
, “
Study of a dissipative particle dynamics based approach for modeling suspensions
,”
J. Rheol.
49
,
401
(
2005
).
35.
W.
Pan
,
B.
Caswell
, and
G. E.
Karniadakis
, “
Rheology, microstructure and migration in Brownian colloidal suspensions
,”
Langmuir
26
,
133
(
2009
).
36.
M.
Whittle
and
K. P.
Travis
, “
Dynamic simulations of colloids by core-modified dissipative particle dynamics
,”
J. Chem. Phys.
132
,
124906
(
2010
).
37.
C.
Marsh
,
G.
Backx
, and
M.
Ernst
, “
Fokker-Planck-Boltzmann equation for dissipative particle dynamics
,”
Europhys. Lett.
38
,
411
(
1997
).
38.
J.
Backer
,
C.
Lowe
,
H.
Hoefsloot
, and
P.
Iedema
, “
Combined length scales in dissipative particle dynamics
,”
J. Chem. Phys.
123
,
114905
(
2005
).
39.
R.
Qiao
and
P.
He
, “
Mapping of dissipative particle dynamics in fluctuating hydrodynamics simulations
,”
J. Chem. Phys.
128
,
126101
(
2008
).
40.
E. S.
Boek
and
P.
van der Schoot
, “
Resolution effects in dissipative particle dynamics simulations
,”
Int. J. Mod. Phys. C
9
,
1307
(
1998
).
41.
P.
Español
and
M.
Revenga
, “
Smoothed dissipative particle dynamics
,”
Phys. Rev. E
67
,
026705
(
2003
).
42.
M.
Grmela
and
H. C.
Öttinger
, “
Dynamics and thermodynamics of complex fluids. I. Development of a general formalism
,”
Phys. Rev. E
56
,
6620
(
1997
).
43.
H. C.
Öttinger
and
M.
Grmela
, “
Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism
,”
Phys. Rev. E
56
,
6633
(
1997
).
44.
J. J.
Monaghan
, “
Smoothed particle hydrodynamics
,”
Annu. Rev. Astron. Astrophys.
30
,
543
(
1992
).
45.
J. J.
Monaghan
, “
Smoothed particle hydrodynamics
,”
Rep. Prog. Phys.
68
,
1703
(
2005
).
46.
P.
Español
,
M.
Serrano
, and
H. C.
Öttinger
, “
Thermodynamically admissible form for discrete hydrodynamics
,”
Phys. Rev. Lett.
83
,
4542
(
1999
).
47.
A.
Vázquez-Quesada
,
M.
Ellero
, and
P.
Español
, “
Consistent scaling of thermal fluctuations in smoothed dissipative particle dynamics
,”
J. Chem. Phys.
130
,
034901
(
2009
).
48.
S.
Litvinov
,
M.
Ellero
,
X. Y.
Hu
, and
N. A.
Adams
, “
Smoothed dissipative particle dynamics model for polymer molecules in suspension
,”
Phys. Rev. E
77
,
066703
(
2008
).
49.
S.
Litvinov
,
M.
Ellero
,
X. Y.
Hu
, and
N. A.
Adams
, “
Particle-layering effect in wall-bounded dissipative particle dynamics
,”
Phys. Rev. E
82
,
066704
(
2010
).
50.
X. Y.
Hu
and
N. A.
Adams
, “
A multi-phase SPH method for macroscopic and mesoscopic flows
,”
J. Comput. Phys.
213
,
844
(
2006
).
51.
A.
Vázquez-Quesada
,
M.
Ellero
, and
P.
Español
, “
Smoothed particle hydrodynamic model for viscoelastic fluids with thermal fluctuations
,”
Phys. Rev. E
79
,
056707
(
2009
).
52.
J. P.
Morris
,
P. J.
Fox
, and
Y.
Zhu
, “
Modeling low Reynolds number incompressible flows using SPH
,”
J. Comput. Phys.
136
,
214
(
1997
).
53.
A. S.
Khair
and
J. F.
Brady
, “
Microrheology of colloidal dispersions: Shape matters
,”
J. Rheol.
52
,
165
(
2008
).
54.
G. K.
Batchelor
,
An Introduction to Fluid Dynamics
(
Cambridge University Press
,
Cambridge, UK
,
1967
).
55.
J. J.
Monaghan
, “
Simulating free surface flows with SPH
,”
J. Comp. Phys.
110
,
399
(
1994
).
56.
M.
Ellero
and
N. A.
Adams
, “
SPH simulations of flow around a periodic array of cylinders confined in a channel
,”
Int. J. Numer. Methods Eng.
86
,
1027
(
2011
).
57.
N. J.
Quinlan
,
M.
Basa
, and
M.
Lastiwka
, “
Truncation error in mesh-free particle methods
,”
Int. J. Numer. Methods Eng.
66
,
2064
(
2006
).
58.
R. D.
Groot
and
P. B.
Warren
, “
Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation
,”
J. Chem. Phys.
107
,
4423
(
1997
).
59.
S.
Chen
,
N.
Phan-Thien
,
B. C.
Khoo
, and
X. J.
Fan
, “
Flow around spheres by dissipative particle dynamics
,”
Phys. Fluids
18
,
103605
(
2006
).
60.
R.
Courant
,
K.
Friedrichs
, and
H.
Lewy
, “
Über did partiellen Differenzengleichungen der mathematicshcen Physik
,”
Math. Ann.
100
,
32
(
1928
).
61.
I. F.
Sbalzarini
,
J. H.
Walther
,
M.
Bergdorf
,
S. E.
Hieber
,
E. M.
Kotsalis
, and
P.
Koumoutsakos
, “
PPM—A highly efficient parallel particle-mesh library for the simulation of continuum systems
,”
J. Comput. Phys.
215
,
566
(
2006
).
62.
J. T.
Padding
and
A. A.
Louis
, “
Hydrodynamic interactions and Brownian forces in colloidal suspensions: Coarse-graining over time and length scales
,”
Phys. Rev. E
74
,
031402
(
2006
).
63.
H.
Hasimoto
, “
On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres
,”
J. Fluid Mech.
5
,
317
(
1959
).
64.
A. S.
Sangani
and
A.
Acrivos
, “
Slow flow past periodic array of cylinders with application to heat transfer
,”
Int. J. Multiphase Flow
8
,
193
(
1982
).
65.
Y.
Zhu
,
P. J.
Fox
, and
J. P.
Morris
, “
A pore-scale numerical model for flow through porous media
,”
Int. J. Numer. Analyt. Meth. Geomech.
23
,
881
(
1999
).
66.
A. S.
Sangani
and
A.
Acrivos
, “
Slow flow through a periodic array of spheres
,”
Int. J. Multiphase Flow
8
,
343
(
1982
).
67.
B. J.
Alder
and
T. E.
Wainwright
, “
Decay of the velocity autocorrelation function
,”
Phys. Rev. A
1
,
18
(
1970
).
68.
M. H.
Hagen
,
I.
Pagonabarraga
,
C. P.
Lowe
, and
D.
Frenkel
, “
Algebraic decay of velocity fluctuations in a confined fluid
,”
Phys. Rev. Lett.
78
,
3785
(
1997
).
69.
C. R.
Robertson
and
A.
Acrivos
, “
Low Reynolds number shear flow past a rotating circular cylinder. Part 1. Momentum transfer
,”
J. Fluid Mech.
40
(
4
),
685
(
1970
).
70.
X. Y.
Hu
and
N. A.
Adams
, “
Angular-momentum conservative smoothed particle hydrodynamics for incompressible viscous flows
,”
Phys. Fluids
18
,
101702
(
2006
).
71.
G. K.
Batchelor
, “
The determination of the bulk stress in a suspension of spherical particles to order c2
,”
J. Fluid Mech.
56
,
401
(
1972
).
72.
D. J.
Jeffrey
and
Y.
Onishi
, “
Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow
,”
J. Fluid. Mech.
139
,
261
(
1984
).
73.
S.
Kim
and
S. J.
Karrila
,
Microhydrodynamics: Principles and Selected Applications
(
Butterworth-Heinemann
,
Boston, MA
,
1991
).
74.
N. Q.
Nguyen
and
A. J. C.
Ladd
, “
Lubrication corrections for lattice-Boltzmann simulations of particle suspensions
,”
Phys. Rev. E
66
,
046708
(
2002
).
75.
S.
Jeney
,
B.
Lukić
,
J. A.
Kraus
,
T.
Franosch
, and
L.
Forró
, “
Anisotropic memory effects in confined colloidal diffusion
,”
Phys. Rev. Lett.
100
,
240604
(
2008
).
76.
J.
Happel
and
H.
Brenner
,
Low Reynolds Number Hydrodynamics with Special Applications to Particulate Media
(
Martinus Nijhoff
,
The Hague
,
1983
).
77.
Z.
Li
and
G.
Drazer
, “
Hydrodynamic interaction in dissipative particle dynamics
,”
Phys. Fluids
20
,
103601
(
2008
).
You do not currently have access to this content.