Resolution requirements for large eddy simulation (LES), estimated by Chapman [AIAA J. 17, 1293 (1979)], are modified using accurate formulae for high Reynolds number boundary layer flow. The new estimates indicate that the number of grid points (N) required for wall-modeled LES is proportional to ReLx, but a wall-resolving LES requires ÑReLx13/7, where Lx is the flat-plate length in the streamwise direction. On the other hand, direct numerical simulation, resolving the Kolmogorov length scale, requires ÑReLx37/14.

1.
D. R.
Chapman
, “
Computational aerodynamics development and outlook
,”
AIAA J.
17
,
1293
(
1979
).
2.
H.
Schlichting
,
Boundary-Layer Theory
(
McGraw-Hill
,
New York
,
1955
).
3.
F. M.
White
,
Viscous Fluid Flow
, 3rd ed. (
McGraw-Hill
,
New York
,
2005
).
4.
H. M.
Nagib
,
K. A.
Chauhan
, and
P. A.
Monkewitz
, “
Approach to an asymptotic state for zero pressure gradient turbulent boundary layers
,”
Philos. Trans. R. Soc. London, Ser. A
365
,
755
(
2007
).
5.
P. A.
Monkewitz
,
K. A.
Chauhan
, and
H. M.
Nagib
, “
Self-consistent high-Reynolds-number asymptotics for zero-pressure-gradient turbulent boundary layers
,”
Phys. Fluids
19
,
115101
(
2007
).
6.
P. R.
Spalart
,
W.-H.
Jou
,
M.
Strelets
, and
S. R.
Allmaras
, “
Comments on the feasibility of LES for wings, and on a hybrid RANS/KES approach
,” in
Advances in DNS/LES
(
Greyden
,
Dayton
,
1997
).
7.
W.
Cabot
and
P.
Moin
, “
Approximate wall boundary conditions in the large-eddy simulation of high Reynolds number flow
,”
Flow, Turbul. Combust.
63
,
269
(
1999
).
8.
F.
Nicoud
,
J. S.
Baggett
,
P.
Moin
, and
W.
Cabot
, “
Large eddy simulation wall-modeling based on suboptimal control theory and linear stochastic estimation
,”
Phys. Fluids
13
,
2968
(
2001
).
9.
U.
Piomelli
and
E.
Balaras
, “
Wall-layer models for large-eddy simulations
,”
Annu. Rev. Fluid Mech.
34
,
349
(
2002
).
10.
A.
Keating
and
U.
Piomelli
, “
A dynamic stochastic forcing method as a wall-layer model for large-eddy simulation
,”
J. Turbul.
7
,
1
(
2006
).
11.
C.
Pantano
,
D. I.
Pullin
,
P. E.
Dimotakis
, and
G.
Matheou
, “
LES approach for high Reynolds number wall-bounded flows with application to turbulent channel flow
,”
J. Comput. Phys.
227
,
9271
(
2008
).
12.
L.
Davidson
, “
Large eddy simulations: How to evaluate resolution
,”
Int. J. Heat Fluid Flow
30
,
1016
(
2009
).
13.
S.
Kawai
and
J.
Larsson
, “
A dynamic wall model for large-eddy simulation of high Reynolds number compressible flows
,”
Annual Research Briefs - 2010
(
Center for Turbulence Research, Stanford University
,
CA
,
2010
), pp.
25
37
.
14.
A. G.
Kravchenko
,
P.
Moin
, and
R.
Moser
, “
Zonal embedded grids for numerical simulations of wall-bounded turbulent flows
,”
J. Comput. Phys.
127
,
412
(
1996
).
15.
R. S.
Rogallo
and
P.
Moin
, “
Numerical simulation of turbulent flows
,”
Annu. Rev. Fluid Mech.
16
,
99
(
1984
).
16.
Z. W.
Hu
,
C. L.
Morfey
, and
N. D.
Sandham
, “
Wall pressure and shear stress spectra from direct simulations of channel flow
,”
AIAA J.
44
,
1541
(
2006
).
17.
R.
Örlü
and
P.
Schlatter
, “
On the fluctuating wall-shear stress in zero pressure-gradient turbulent boundary layer flows
,”
Phys. Fluids
23
,
021704
(
2011
).
You do not currently have access to this content.