We study the dynamics of freely moving plates connected by a shallow liquid bridge via analytic and experimental methods. The gap between the plates is used as a small parameter within a lubrication approximation, reducing the problem to an Abel equation of the second kind. Analysis of the governing differential equation yields two novel physical phenomena: (1) An impulse-like peak in the force applied by the liquid bridge on the plates, obtained from a uniform asymptotic solution for small capillary numbers. (2) Both linear and non-linear oscillations of the system for the case of surfaces with low wettability, obtained from small perturbations of the system around the equilibrium point. An experimental setup examining the motion of freely moving plates was constructed, yielding experimental data which compared favorably with the analytic results and specifically displayed the predicted oscillations and impulse-like peak of the applied force. The application of the current analysis to the manipulation of solid bodies and possible future research directions are discussed.

1.
M. J.
Vogel
and
P. H.
Steen
, “
Capillarity-based switchable adhesion
,”
Proc. Natl. Acad. Sci. U.S.A.
107
,
3377
(
2010
).
2.
S.
Saito
,
T.
Motokado
,
K. J.
Obata
, and
K.
Takahashi
, “
Capillary force with a concave probe-tip for micromanipulation
,”
Appl. Phys. Lett.
87
,
234103
(
2005
).
3.
P.
Lambert
,
F.
Seigneur
,
S.
Koelemeijer
, and
J.
Jacot
, “
A case study of surface tension gripping: The watch bearing
,”
J. Micromech. Microeng.
16
,
1267
(
2006
).
4.
K. J.
Obata
,
T.
Motokado
,
S.
Saito
, and
K.
Takahashi
, “
A scheme for micro-manipulation based on capillary force
,”
J. Fluid Mech.
498
,
113
(
2004
).
5.
G.
Fantoni
and
M.
Porta
, “
A Critical review of releasing strategies in microparts handling
,”
Int. Fed. Inf. Process.: Micro-Assem. Technol Appl.
260
,
223
(
2008
).
6.
P.
Lambert
,
M.
Mastrangeli
,
J.-B.
Valsamis
, and
G.
Degrez
, “
Spectral analysis and experimental study of lateral capillary dynamics for flip-chip applications
,”
Microfluid. Nanofluid.
9
,
797
(
2010
).
7.
B.
Markicevic
,
T. G.
D’Onofrio
, and
H. K.
Navaz
, “
On spread extent of sessile droplet into porous medium: Numerical solution and comparisons with experiments
,”
Phys. Fluids
22
,
012103
(
2010
).
8.
H.-J.
Butt
and
M.
Kappl
, “
Normal capillary forces
,”
Adv. Colloid Interface Sci.
146
,
48
(
2008
).
9.
W. C.
Carter
, “
The forces and behavior of fluids constrained by solids
,”
Acta Metall.
36
,
2283
(
1988
).
10.
D. N.
Mazzon
,
G. I.
Tardos
, and
R.
Pfeffe
, “
The behavior of liquid bridges between two relatively moving particles
,”
Powder Technol.
51
,
71
(
1987
).
11.
S.
Dodds
,
M. D. S.
Carvalho
, and
S.
Kumar
, “
Stretching and slipping of liquid bridges near plates and cavities
,”
Phys. Fluids
,
21
,
092103
(
2009
).
12.
O.
Pitois
,
P.
Moucheront
, and
X.
Chateau
, “
Liquid bridge between two moving spheres: An experimental study of viscosity effects
,”
J. Colloid Interface Sci.
231
,
26
(
2000
).
13.
M.-H.
Meurisse
and
M.
Querry
, “
Squeeze effects in a flat liquid bridge between parallel solid surfaces
,”
J. Tribol.
128
,
575
(
2006
).
14.
E. J.
De Souza
,
L.
Gao
,
T. J.
McCarthy
,
E.
Arzt
, and
A. J.
Crosby
, “
Effect of contact angle hysteresis on the measurement of capillary forces
,”
Langmuir
24
,
1391
(
2008
).
15.
W. M.
Deen
,
Analysis of Transport Phenomena
(
Oxford University Press
,
New York
,
1998
).
16.
L. G.
Leal
,
Advanced Transport Phenomena
(
Cambridge University Press
,
New York
,
2007
).
17.
A.
Oron
,
S. H.
Davis
, and
S. G.
Bankoff
, “
Long-scale evolution of thin liquid films
,”
Rev. Mod. Phys.
69
,
931
(
1997
).
18.
P.-G.
de Gennes
,
F.
Brochard-Wyart
, and
D.
Quere
,
Capillarity and Wetting Phenomena
(
Springer
,
New York
,
2004
).
19.
S.
Sikalo
,
C.
Tropea
, and
E.
Ganic
, “
Dynamic wetting angle of a spreading droplet
,”
Exp. Therm. Fluid Sci.
29
,
795
(
2005
).
20.
E. J.
De Souza
,
M.
Brinkmann
,
C.
Mohrdieck
,
A.
Crosby
, and
E.
Arzt
, “
Capillary forces between chemically different substrates
,”
Langmuir
24
,
10161
(
2008
).
21.
H.
Schlichting
,
Boundary Layer Theory
(
McGraw-Hill
,
New York
,
1968
).
22.
A.
Fidlin
,
Nonlinear Oscillations in Mechanical Engineering
(
Springer
,
New York
,
2006
).
You do not currently have access to this content.