A striking feature has been observed in a laboratory wave tank with a thin layer of clear water overlying a layer of mud. A piston-type wave maker is used to generate long monochromatic surface waves in a tank with a layer of kaolinite clay at the bottom. The wave action on the mud causes the clay particles to rise from the bottom into the water column, forming a lutocline. As the lutocline approaches the water surface, a set of standing interfacial waves form on the lutocline. The interfacial wave directions are oriented nearly orthogonal to the surface wave direction. The interfacial waves, which sometimes cover the entire length and width of the tank, are also temporally subharmonic as the phase of the interfacial wave alternates with each passing surface wave crest. These interfacial waves are the result of a resonant three-wave interaction involving the surface wave train and the two interfacial wave trains. The interfacial waves are only present when the lutocline is about 3 cm of the water surface and they can be sufficiently nonlinear as to exhibit superharmonics and a breaking-type of instability.

1.
C. C.
Mei
and
U.
Ünlüata
, “
Harmonic generation in shallow water waves
,” in
Waves of Beaches and Resulting Sediment Transport
, edited by
R. E.
Meyer
(
Academic Press
,
New York
,
1972
), pp.
181
202
.
2.
O. M.
Phillips
, “
On the dynamics of unsteady gravity waves of finite amplitude. Part 1
,”
J. Fluid Mech.
9
,
193
(
1960
).
3.
M. S.
Longuet-Higgins
, “
Resonant interactions between two trains of gravity waves
,”
J. Fluid Mech.
12
,
321
(
1962
).
4.
K.
Hasselmann
, “
On the non-linear energy transfer in a gravity wave spectrum. Part 1
,”
J. Fluid Mech.
12
,
481
(
1962
).
5.
L. F.
McGoldrick
, “
Resonant interactions among capillary-gravity waves
,”
J. Fluid Mech.
21
,
305
(
1965
).
6.
R. E.
Davis
and
A.
Acrivos
, “
The stability of oscillatory internal waves
,”
J. Fluid Mech.
30
,
723
(
1967
).
7.
P.
Muller
,
G.
Holloway
,
F.
Henyey
, and
N.
Pomphrey
, “
Nonlinear interactions among internal gravity waves
,”
Rev. Geophys.
24
,
493
, doi: (
1986
).
8.
O. M.
Phillips
, “
Wave interactions - the evolution of an idea
,”
J. Fluid Mech.
106
,
215
(
1981
).
9.
S.
Elgar
and
B.
Raubenheimer
, “
Wave dissipation by muddy seafloors
,”
Geophys. Res. Lett.
35
, doi: (
2008
).
10.
P.
Traykovski
, personal communication, (
2010
).
11.
F.
Wen
, “
Resonant generation of internal waves on the soft sea bed by a surface water wave
,”
Phys. Fluids
7
,
1915
(
1995
).
12.
D. F.
Hill
and
M. A.
Foda
, “
Subharmonic resonance of short internal standing waves by progressive surface waves
,”
J. Fluid Mech.
321
,
217
(
1996
).
13.
D. F.
Hill
and
M. A.
Foda
, “
Subharmonic resonance of oblique interfacial waves by a progressive surface wave
,”
Proc. R. Soc. London, Ser. A
454
,
1129
(
1998
).
14.
D. F.
Hill
, “
Weakly nonlinear cubic interactions between surface waves and interfacial waves: An analytic solution
,”
Phys. Fluids
16
,
839
(
2004
).
15.
M.
Jamali
, “
Surface wave interaction with oblique internal waves
,” Ph.D. thesis,
University of British Columbia
, Canada,
1998
.
16.
M.
Jamali
,
G. A.
Lawrence
, and
B.
Seymour
, “
A note on the resonant interaction between a surface wave and two interfacial waves
,”
J. Fluid Mech.
49
,
1
(
2003
).
17.
M.
Jamali
,
B.
Seymour
, and
G. A.
Lawrence
, “
Asymptotic analysis of a surface-interfacial wave interaction
,”
Phys. Fluids
15
,
47
(
2003
).
18.
M.
Jamali
and
G.
Lawrence
, “
Viscous wave interaction due to motion of a surface wave over a sediment bed
,”
J. Offshore Mech. Arct. Eng.
128
,
276
(
2006
).
19.
M.
Jamali
and
B.
Seymour
, “
The interaction of a surface wave with waves on a diffuse interface
,”
J. Phys. Oceanogr.
34
,
204
(
2004
).
20.
H.
Lamb
,
Hydrodynamics
(
Dover
,
New York
,
1932
), Chap. 9 (article 231).
21.
S. A.
Thorpe
, “
On standing internal gravity waves of finite amplitude
,”
J. Fluid Mech.
32
,
489
(
1968
).
22.
J. N.
Hunt
, “
Internal waves of finite amplitude
,”
La Houille Blanche
4
,
515
(
1961
).
23.
Y.
Tsuji
and
Y.
Nagata
, “
Stokes’ expansion of internal deep water waves to the fifth order
,”
J. Oceanogr. Soc. Jpn
29
,
61
(
1973
).
24.
O. M.
Phillips
,
Dynamics of the Upper Ocean
(
Cambridge University Press
,
Cambridge, UK
,
1966
), Chap. 3.8.
25.
K.
Hasselmann
, “
A criterion for nonlinear wave stability
,”
J. Fluid Mech.
30
,
737
(
1967
).
26.
T.
Sakakiyama
and
E. W.
Bijker
, “
Mass transport velocity in mud layer due to progressive waves
,”
J. Waterway, Port, Coastal, Ocean Eng.
115
,
614
(
1989
).
27.
G. K.
Keulegan
and
L. H.
Carpenter
,
An experimental study of internal progressive oscillatory waves
, Technical Report No. 7319, National Bureau of Standards,
1961
.
You do not currently have access to this content.