Experiments with a liquid metal alloy, Galinstan, are reported and show clear evidence of Alfvén wave propagation as well as resonance of Alfvén modes. Galinstan is liquid at room temperature and, although its electrical conductivity is not as large as that of liquid sodium or NaK, it has still been possible to study Alfvén waves, thanks to the use of intense magnetic fields up to 13 T. The maximal values of Lundquist number, around 60, are similar to that of the reference experimental study by Jameson [J. Fluid Mech. 19, 513 (1964)]. The generation mechanism for Alfvén waves and their reflection is studied carefully. Numerical simulations have been performed and have been able to reproduce the experimental results, despite the fact that the simulated magnetic Prandtl number was much larger than that of Galinstan. An originality of the present study is that a poloidal disturbance (magnetic and velocity fields) is generated, allowing us to track its propagation from outside the conducting domain, hence without interfering.

1.
A.
Jameson
, “
A demonstration of Alfvén waves. Part I. Generation of standing waves
,”
J. Fluid Mech.
19
,
513
(
1964
).
2.
H.
Alfvén
, “
Existence of electromagnetic-hydrodynamic waves
,”
Nature
150
,
405
(
1942
).
3.
B. T.
Tsurutani
,
G. S.
Lakhina
,
J. S.
Pickett
,
F. L.
Guarnieri
,
N.
Lin
, and
B. E.
Goldstein
, “
Nonlinear Alfvén waves, discontinuities, proton perpendicular acceleration, and magnetic holes/decreases in interplanetary space and the magnetosphere: Intermediate shocks?
,”
Nonlinear Processes Geophys.
12
,
321
(
2005
).
4.
T.
Van Doorsselaere
,
V. M.
Nakariakov
, and
E.
Verwichte
, “
Detection of waves in the solar corona: Kink or Alfvén?
,”
Astrophys. J. Lett.
676
,
L73
(
2008
).
5.
D. J.
Stevenson
, “
Planetary magnetic fields
,”
Earth Planet. Sci. Lett.
208
,
1
(
2003
).
6.
R.
Hide
, “
Free hydromagnetic oscillations of the Earth’s core and the theory of the geomagnetic secular variation
,”
Philos. Trans. R. Soc. London, Ser. A
259
,
615
(
1966
).
7.
S. I.
Braginsky
and
P.
Roberts
, “
Magnetic field generation by baroclinic waves
,”
Proc. R. Soc. London, Ser. A
347
,
125
(
1975
).
8.
E.
Canet
,
A.
Fournier
, and
D.
Jault
, “
Forward and adjoint quasi-geostrophic models of the geomagnetic secular variation
,”
J. Geophys. Res.
114
,
B11101
, doi:10.1029/2008JB006189 (
2009
).
9.
N.
Gillet
,
D.
Jault
,
E.
Canet
, and
A.
Fournier
, “
Fast torsional waves and strong magnetic field within the Earth’s core
,”
Nature
465
,
74
(
2010
).
10.
F.
Plunian
and
R.
Stepanov
, “
Cascades and dissipation ratio in rotating magnetohydrodynamic turbulence at low magnetic Prandtl number
,”
Phys. Rev. E
82
,
046311
(
2010
).
11.
T. A.
Carter
,
B.
Brugman
,
P.
Pribyl
, and
W.
Lybarger
, “
Laboratory observation of a nonlinear interaction between shear Alfvén waves
,”
Phys. Rev. Lett.
96
,
155001
(
2006
).
12.
W.
Gekelman
, “
Review of laboratory experiments on Alfvén waves and their relationship to space observations
,”
J. Geophys. Res.
107
(
A7
),
14417
, doi:10.1029/98JA00161 (
1999
).
13.
D.
Schmitt
,
T.
Alboussière
,
D.
Brito
,
P.
Cardin
,
N.
Gagnière
,
D.
Jault
, and
H.-C.
Nataf
, “
Rotating spherical Couette flow in a dipolar magnetic field: Experimental study of magneto-inertial waves
,”
J. Fluid Mech.
604
,
175
(
2008
).
14.
H. D.
Hess
and
H.
Hinsch
, “
Propagation of Alfvén waves in bismuth
,”
Appl. Phys. B: Lasers Opt.
2
(
1
),
27
(
1973
).
15.
S.
Lundquist
, “
Experimental investigations of magneto-hydrodynamic waves
,”
Phys. Rev.
76
(
12
),
1805
(
1949
).
16.
B.
Lehnert
, “
Magneto-hydrodynamic waves in liquid sodium
,”
Phys. Rev.
94
(
4
),
815
(
1953
).
17.
A.
Jameson
, “
Magnetohydrodynamic waves
,” Ph. D. dissertation (Department of Engineering,
University of Cambridge
,
1961
).
18.
L.
Lacaze
,
W.
Herreman
,
M.
Le Bars
,
S.
Le Dizès
, and
P.
Le Gal
, “
Magnetic field induced by elliptical instability in a rotating spheroid
,”
Geophys. Astrophys. Fluid Dyn.
100
,
299
(
2006
).
19.
V.
Kocourek
,
C.
Karcher
,
M.
Conrath
, and
D.
Schulze
, “
Stability of liquid metal drops affected by a high-frequency magnetic field
,”
Phys. Rev. E
74
,
026303
(
2006
).
20.
L.
Bühler
, and
U.
Müller
,
Magnetofluidynamics in Channels and Containers
(
Springer-Verlag
,
Berlin
,
2001
).
21.
C. B.
Jackson
and
R. M.
Adams
, “
Chemical properties and laboratory techniques
,” in
Liquid Metals Handbook
, edited by
R. N.
Lyon
(
Office of Naval Research
,
1952
), Chap. III, pp.
103
143
.
22.
G.
Aubert
,
F.
Debray
,
J.
Dumas
,
W.
Joss
,
S.
Krämer
,
G.
Martinez
,
E.
Mossang
,
P.
Petmezakis
,
P.
Sala
,
J. L.
Tholence
,
C.
Trophime
, and
N.
Vidal
, “
High magnetic field facility in Grenoble
,”
J. Phys.: Conf. Ser.
51
,
659
(
2006
).
23.
A.
Le Hyaric
,
F.
Hecht
,
O.
Pironneau
, and
K.
Ohtsuka
. Freefem ++ . User documentation, INRIA, France,
2003
.
24.
J.-L.
Guermond
,
R.
Laguerre
,
J.
Léorat
, and
C.
Nore
, “
An interior penalty galerkin method for the MHD equations in heterogeneous domains
,”
J. Comput. Phys.
221
,
349
(
2007
).
25.
A.
Bossavit
,
Electromagnétisme en vue de la modélisation
(
SMAI/Springer-Verlag
,
Paris
,
1993
).
26.
R. R.
Kerswell
, “
Elliptical instability
,”
Annu. Rev. Fluid Mech.
34
,
83
(
2002
).
You do not currently have access to this content.