We studied the properties of the large-scale circulation (LSC) in turbulent Rayleigh-Bénard (RB) convection by using results from direct numerical simulations in which we placed a large number of numerical probes close to the sidewall. The LSC orientation is determined by either a cosine or a polynomial fit to the azimuthal temperature or azimuthal vertical velocity profile measured with the probes. We study the LSC in Γ = D/L = 1/2 and Γ = 1 samples, where D is the diameter and L is the height. For Pr = 6.4 in an aspect ratio Γ = 1 sample at Ra = 1 × 108 and 5 × 108, the obtained LSC orientation is the same, irrespective of whether the data of only 8 or all 64 probes per horizontal plane are considered. In a Γ = 1/2 sample with Pr = 0.7 at Ra = 1 × 108, the influence of plumes on the azimuthal temperature and azimuthal vertical velocity profiles is stronger. Due to passing plumes and/or the corner flow, the apparent LSC orientation obtained using a cosine fit can result in a misinterpretation of the character of the large-scale flow. We introduce the relative LSC strength, which we define as the ratio between the energy in the first Fourier mode and the energy in all modes that can be determined from the azimuthal temperature and azimuthal vertical velocity profiles, to further quantify the large-scale flow. For Ra = 1 × 108, we find that this relative LSC strength is significantly lower in a Γ = 1/2 sample than in a Γ = 1 sample, reflecting that the LSC is much more pronounced in a Γ = 1 sample than in a Γ = 1/2 sample. The determination of the relative LSC strength can be applied directly to available experimental data to study high Rayleigh number thermal convection and rotating RB convection.

1.
G.
Ahlers
,
S.
Grossmann
, and
D.
Lohse
, “
Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection
,”
Rev. Mod. Phys.
81
,
503
(
2009
).
2.
G.
Ahlers
, “
Turbulent convection
,”
Physics
2
,
74
(
2009
).
3.
D.
Lohse
and
K. Q.
Xia
, “
Small-scale properties of turbulent Rayleigh-Bénard convection
,”
Annu. Rev. Fluid Mech.
42
,
335
(
2010
).
4.
J.
Niemela
,
L.
Skrbek
,
K. R.
Sreenivasan
, and
R. J.
Donnelly
, “
The wind in confined thermal turbulence
,”
J. Fluid Mech.
449
,
169
(
2001
).
5.
K.-Q.
Xia
,
C.
Sun
, and
S. Q.
Zhou
, “
Particle image velocimetry measurement of the velocity field in turbulent thermal convection
,”
Phys. Rev. E
68
,
066303
(
2003
).
6.
D.
Funfschilling
and
G.
Ahlers
, “
Plume motion and large scale circulation in a cylindrical Rayleigh-Bénard cell
,”
Phys. Rev. Lett.
92
,
194502
(
2004
).
7.
C.
Sun
,
K. Q.
Xia
, and
P.
Tong
, “
Three-dimensional flow structures and dynamics of turbulent thermal convection in a cylindrical cell
,”
Phys. Rev. E
72
,
026302
(
2005
).
8.
C.
Sun
,
H. D.
Xi
, and
K. Q.
Xia
, “
Azimuthal symmetry, flow dynamics, and heat transport in turbulent thermal convection in a cylinder with an aspect ratio of 0.5
,”
Phys. Rev. Lett.
95
,
074502
(
2005
).
9.
E.
Brown
and
G.
Ahlers
, “
Rotations and cessations of the large-scale circulation in turbulent Rayleigh-Bénard convection
,”
J. Fluid Mech.
568
,
351
(
2006
).
10.
E.
Brown
and
G.
Ahlers
, “
Effect of the Earth’s Coriolis force on turbulent Rayleigh-Bénard convection in the laboratory
,”
Phys. Fluids
18
,
125108
(
2006
).
11.
H. D.
Xi
and
K. Q.
Xia
, “
Cessations and reversals of the large-scale circulation in turbulent thermal convection
,”
Phys. Rev. E
75
,
066307
(
2007
).
12.
E.
Brown
and
G.
Ahlers
, “
Large-scale circulation model for turbulent Rayleigh-Bénard convection
,”
Phys. Rev. Lett.
98
,
134501
(
2007
).
13.
E.
Brown
and
G.
Ahlers
, “
A model of diffusion in a potential well for the dynamics of the large-scale circulation in turbulent RayleighBnard convection
,”
Phys. Fluids
20
,
075101
(
2008
).
14.
E.
Brown
and
G.
Ahlers
, “
Azimuthal asymmetries of the large-scale circulation in turbulent RayleighBénard convection
,”
Phys. Fluids
20
,
105105
(
2008
).
15.
D.
Funfschilling
,
E.
Brown
, and
G.
Ahlers
, “
Torsional oscillations of the large-scale circulation in turbulent Rayleigh-Bénard convection
,”
J. Fluid Mech.
607
,
119139
(
2008
).
16.
H. D.
Xi
and
K. Q.
Xia
, “
Flow mode transitions in turbulent thermal convection
,”
Phys. Fluids
20
,
055104
(
2008
).
17.
H. D.
Xi
and
K. Q.
Xia
, “
Azimuthal motion, reorientation, cessation, and reversal of the large-scale circulation in turbulent thermal convection: A comparison between aspect ratio one and one-half geometries
,”
Phys. Rev. E
78
,
036326
(
2008
).
18.
R. P. J.
Kunnen
,
H. J. H.
Clercx
, and
B. J.
Geurts
, “
Breakdown of large-scale circulation in turbulent rotating convection
,”
Europhys. Lett.
84
,
24001
(
2008
).
19.
H. D.
Xi
,
S. Q.
Zhou
,
Q.
Zhou
,
T. S.
Chan
, and
K. Q.
Xia
, “
Origin of temperature oscillations in turbulent thermal convection
,”
Phys. Rev. Lett.
102
,
044503
(
2009
).
20.
Q.
Zhou
,
H. D.
Xi
,
S. Q.
Zhou
,
C.
Sun
, and
K. Q.
Xia
, “
Oscillations of the large-scale circulation in turbulent Rayleigh-Bénard convection: The sloshing mode and its relationship with the torsional mode
,”
J. Fluid Mech.
630
,
367
(
2009
).
21.
E.
Brown
and
G.
Ahlers
, “
The origin of oscillations of the large-scale circulation of turbulent Rayleigh-Bénard convection
,”
J. Fluid Mech.
638
,
383
(
2009
).
22.
J.-Q.
Zhong
,
R. J. A. M.
Stevens
,
H. J. H.
Clercx
,
R.
Verzicco
,
D.
Lohse
, and
G.
Ahlers
, “
Prandtl-, Rayleigh-, and Rossby-number dependence of heat transport in turbulent rotating Rayleigh-Bénard convection
,”
Phys. Rev. Lett.
102
,
044502
(
2009
).
23.
R. J. A. M.
Stevens
,
J.-Q.
Zhong
,
H. J. H.
Clercx
,
G.
Ahlers
, and
D.
Lohse
, “
Transitions between turbulent states in rotating Rayleigh-Bénard convection
,”
Phys. Rev. Lett.
103
,
024503
(
2009
).
24.
K.
Sugiyama
,
R.
Ni
,
R. J. A. M.
Stevens
,
T. S.
Chan
,
S.-Q.
Zhou
,
H.-D.
Xi
,
C.
Sun
,
S.
Grossmann
,
K.-Q.
Xia
, and
D.
Lohse
, “
Flow reversals in thermally driven turbulence
,”
Phys. Rev. Lett.
105
,
034503
(
2010
).
25.
R.
Verzicco
and
R.
Camussi
, “
Numerical experiments on strongly turbulent thermal convection in a slender cylindrical cell
,”
J. Fluid Mech.
477
,
19
(
2003
).
26.
G.
Stringano
and
R.
Verzicco
, “
Mean flow structure in thermal convection in a cylindrical cell of aspect-ratio one half
,”
J. Fluid Mech.
548
,
1
(
2006
).
27.
M.
Kaczorowski
and
C.
Wagner
, “
Analysis of the thermal plumes in turbulent RayleighBénard convection based on well-resolved numerical simulations
,”
J. Fluid. Mech.
618
,
89
(
2009
).
28.
P.
Mishra
,
A.
De
,
M.
Verma
, and
V.
Eswaran
, “
Dynamics of reorientations and reversals of large-scale flow in Rayleigh-Bénard convection
,”
J. Fluid. Mech.
668
,
480
(
2011
).
29.
K. R.
Sreenivasan
,
A.
Bershadskii
, and
J.
Niemela
, “
Mean wind and its reversals in thermal convection
,”
Phys. Rev. E
65
,
056306
(
2002
).
30.
R.
Benzi
, “
Flow reversal in a simple dynamical model of turbulence
,”
Phys. Rev. Lett.
95
,
024502
(
2005
).
31.
F.
Fontenele Araujo
,
S.
Grossmann
, and
D.
Lohse
, “
Wind reversals in turbulent Rayleigh-Bénard convection
,”
Phys. Rev. Lett.
95
,
084502
(
2005
).
32.
C.
Resagk
,
R.
du Puits
,
A.
Thess
,
F. V.
Dolzhansky
,
S.
Grossmann
,
F.
Fontenele Araujo
, and
D.
Lohse
, “
Oscillations of the large scale wind in turbulent thermal convection
,”
Phys. Fluids
18
,
095105
(
2006
).
33.
E.
Brown
,
A.
Nikolaenko
, and
G.
Ahlers
, “
Reorientation of the large-scale circulation in turbulent Rayleigh-Bénard convection
,”
Phys. Rev. Lett.
95
,
084503
(
2005
).
34.
H.-D.
Xi
,
Q.
Zhou
, and
K.-Q.
Xia
, “
Azimuthal motion of the mean wind in turbulent thermal convection
,”
Phys. Rev. E
73
,
056312
(
2006
).
35.
See supplementary material at http://dx.doi.org/10.1063/1.3620999 for movies that show the flow dynamics in horizontal or vertical planes.
36.
D.
Funfschilling
,
E.
Bodenschatz
, and
G.
Ahlers
, “
Search for the ‘ultimate state’ in turbulent Rayleigh-Bénard convection
,”
Phys. Rev. Lett.
103
,
014503
(
2009
).
37.
R. J. A. M.
Stevens
,
R.
Verzicco
, and
D.
Lohse
, “
Radial boundary layer structure and Nusselt number in Rayleigh-Bénard convection
,”
J. Fluid. Mech.
643
,
495
(
2010
).
38.
S.
Weiss
,
R.
Stevens
,
J.-Q.
Zhong
,
H.
Clercx
,
D.
Lohse
, and
G.
Ahlers
, “
Finite-size effects lead to supercritical bifurcations in turbulent rotating Rayleigh-Bénard convection
,”
Phys. Rev. Lett.
105
,
224501
(
2010
).
39.
R.
Verzicco
and
P.
Orlandi
, “
A finite-difference scheme for three-dimensional incompressible flow in cylindrical coordinates
,”
J. Comput. Phys.
123
,
402
(
1996
).
40.
R.
Verzicco
and
R.
Camussi
, “
Prandtl number effects in convective turbulence
,”
J. Fluid Mech.
383
,
55
(
1999
).
41.
J.
Bailon-Cuba
,
M.
Emran
, and
J.
Schumacher
, “
Aspect ratio dependence of heat transfer and large-scale flow in turbulent convection
,”
J. Fluid Mech.
655
,
152
(
2010
).
42.
E.
Villermaux
, “
Memory-induced low frequency oscillations in closed convection boxes
,”
Phys. Rev. Lett.
75
,
4618
(
1995
).
43.
B.
Castaing
,
G.
Gunaratne
,
F.
Heslot
,
L.
Kadanoff
,
A.
Libchaber
,
S.
Thomae
,
X. Z.
Wu
,
S.
Zaleski
, and
G.
Zanetti
, “
Scaling of hard thermal turbulence in Rayleigh-Bénard convection
,”
J. Fluid Mech.
204
,
1
(
1989
).
44.
P.-E.
Roche
,
B.
Castaing
,
B.
Chabaud
, and
B.
Hebral
, “
Prandtl and Rayleigh numbers dependences in Rayleigh-Bénard convection
,”
Europhys. Lett.
58
,
693
(
2002
).
45.
P.-E.
Roche
,
F.
Gauthier
,
R.
Kaiser
, and
J.
Salort
, “
On the triggering of the ultimate regime of convection
,”
New J. Phys.
12
,
085014
(
2010
).
46.
S.
Weiss
and
G.
Ahlers
, “
Turbulent Rayleigh-Bénard convection in a cylindrical container with aspect ratio Γ = 0.50 and Prandtl number Pr = 4.38
,”
J. Fluid. Mech.
676
,
5
(
2011
).
47.
R. J. A. M.
Stevens
,
D.
Lohse
, and
R.
Verzicco
, “
Prandtl number dependence of heat transport in high Rayleigh number thermal convection
,” J. Fluid. Mech. (to be published).

Supplementary Material

You do not currently have access to this content.