We investigate the gas jet breakup and the resulting microbubble formation in a microfluidic flow-focusing device using ultra high-speed imaging at 1 × 106 frames/s. In recent experiments [Dollet et al., Phys. Rev. Lett. 100, 034504 (2008)], it was found that in the final stage of the collapse the radius of the neck scales with time with a 1/3 power-law exponent, which suggested that gas inertia and the Bernoulli suction effect become important. Here, ultra high-speed imaging was used to capture the complete bubble contour and quantify the gas flow through the neck. The high temporal resolution images enable us to approach the final moment of pinch-off to within 1 μs. It revealed that during the collapse, the flow of gas reverses and accelerates towards its maximum velocity at the moment of pinch-off. However, the resulting decrease in pressure, due to Bernoulli suction, is too low to account for the accelerated collapse. We observe two stages of the collapse process. At first, the neck collapses with a scaling exponent of 1/3 which is explained by a “filling effect.” In the final stage, the collapse is characterized by a scaling exponent of 2/5, which can be derived, based on the observation that during the collapse the neck becomes less slender, due to the driving through liquid inertia. However, surface tension forces are still important until the final microsecond before pinch-off.

1.
J.
Eggers
, “
Nonlinear dynamics and breakup of free-surface flows
,”
Rev. Mod. Phys.
69
(
3
),
865
(
1997
).
2.
J.
Eggers
and
E.
Villermaux
, “
Physics of liquid jets
,”
Rep. Prog. Phys.
71
(
3
),
036601
(
2008
).
3.
Y.-J.
Chen
and
P. H.
Steen
, “
Dynamics of inviscid capillary breakup: Collapse and pinchoff of a film bridge
,”
J. Fluid Mech.
341
,
245
(
1997
).
4.
R. F.
Day
,
E. J.
Hinch
, and
J. R.
Lister
, “
Self-similar capillary pinchoff of an inviscid fluid
,”
Phys. Rev. Lett.
80
(
4
),
704
(
1998
).
5.
A. M.
Gañán-Calvo
and
J. M.
Gordillo
, “
Perfectly monodisperse microbubbling by capillary flow focusing
,”
Phys. Rev. Lett.
87
(
27
),
274501
(
2001
).
6.
D.
Leppinen
and
J. R.
Lister
, “
Capillary pinch-off in inviscid fluids
,”
Phys. Fluids
,
15
(
2
),
568
(
2003
).
7.
J. C.
Burton
,
R.
Waldrep
, and
P.
Taborek
, “
Scaling and instabilities in bubble pinch-off
,”
Phys. Rev. Lett.
94
(
18
),
184502
(
2005
).
8.
J. M.
Gordillo
,
A.
Sevilla
,
J.
Rodríguez-Rodríguez
, and
C.
Martínez-Bazán
, “
Axisymmetric bubble pinch-off at high Reynolds numbers
,”
Phys. Rev. Lett.
95
(
19
),
194501
(
2005
).
9.
A. M.
Gañán-Calvo
,
M. A.
Herrada
, and
P.
Garstecki
, “
Bubbling in unbounded coflowing liquids
,”
Phys. Rev. Lett.
96
(
12
),
124504
(
2006
).
10.
J. M.
Gordillo
and
M.
Pérez-Saborid
, “
Axisymmetric breakup of bubbles at high Reynolds numbers
,”
J. Fluid Mech.
562
,
303
(
2006
).
11.
R. P. H. M.
Bergmann
,
D.
van der Meer
,
M.
Stijnman
,
M.
Sandtke
,
A.
Prosperetti
, and
D.
Lohse
, “
Giant bubble pinch-off
,”
Phys. Rev. Lett.
96
(
15
),
154505
(
2006
).
12.
N. C.
Keim
,
P.
Møller
,
W. W.
Zhang
, and
S. R.
Nagel
, “
Breakup of air bubbles in water: Memory and breakdown of cylindrical symmetry
,”
Phys. Rev. Lett.
97
,
144503
(
2006
).
13.
S. T.
Thoroddsen
,
T. G.
Etoh
, and
K.
Takehara
, “
Experiments on bubble pinch-off
,”
Phys. Fluids
,
19
(
4
),
042101
(
2007
).
14.
J. M.
Gordillo
, “
Axisymmetric bubble collapse in a quiescent liquid pool. I. Theory and numerical simulations
,”
Phys. Fluids
20
,
112103
(
2008
).
15.
S.
Gekle
,
J. H.
Snoeijer
,
D.
Lohse
, and
D.
van der Meer
, “
Approach to universality in axisymmetric bubble pinch-off
,”
Phys. Rev. E
80
,
036305
(
2009
).
16.
H.
Wijshoff
, “
The dynamics of the piezo inkjet printhead operation
,”
Phys. Rep.
491
,
77
(
2010
).
17.
K.
Ferrara
,
R.
Pollard
, and
M.
Borden
, “
Ultrasound microbubble contrast agents: Fundamentals and application to gene and drug delivery
,”
Annu. Rev. Biomed. Eng.
9
,
415
(
2007
).
18.
K. W.
Ferrara
,
M. A.
Borden
, and
H.
Zhang
, “
Lipid-shelled vehicles: Engineering for ultrasound molecular imaging and drug delivery
,”
Acc. Chem. Res.
42
,
881
(
2009
).
19.
J. C.
Burton
,
J. E.
Rutledge
, and
P.
Taborek
, “
Fluid pinch-off dynamics at nanometer length scales
,”
Phys. Rev. Lett.
92
(
24
),
244505
(
2004
).
20.
H.
González
and
F. J.
García
, “
The measurement of growth rates in capillary jets
,”
J. Fluid Mech.
619
,
179
(
2009
).
21.
M. S.
Longuet-Higgins
,
B. R.
Kerman
, and
K.
Lunde
, “
The release of air bubbles from an underwater nozzle
,”
J. Fluid Mech.
230
,
365
(
1991
).
22.
H. N.
Oğuz
and
A.
Prosperetti
, “
Dynamics of bubble-growth and detachment from a needle
,”
J. Fluid Mech.
257
,
111
(
1993
).
23.
R.
Bolaños-Jiménez
,
A.
Sevilla
,
C.
Martínez-Bazán
, and
J. M.
Gordillo
, “
Axisymmetric bubble collapse in a quiescent liquid pool. II. Experimental study
,”
Phys. Fluids
20
(
11
),
112104
(
2008
).
24.
R.
Bolaños-Jiménez
,
A.
Sevilla
,
C.
Martínez-Bazán
,
D.
van der Meer
, and
J. M.
Gordillo
, “
The effect of liquid viscosity on bubble pinch-off
,”
Phys. Fluids
21
,
072103
(
2009
).
25.
J.
Eggers
,
M. A.
Fontelos
,
D.
Leppinen
, and
J. H.
Snoeijer
, “
Theory of the collapsing axisymmetric cavity
,”
Phys. Rev. Lett.
98
,
094502
(
2007
).
26.
P.
Garstecki
,
H. A.
Stone
, and
G. M.
Whitesides
, “
Mechanism for flow-rate controlled breakup in confined geometries: A route to monodisperse emulsions
,”
Phys. Rev. Lett.
94
(
16
),
164501
(
2005
).
27.
S.
Gekle
,
I.
Peters
,
J. M.
Gordillo
,
D.
van der Meer
, and
D.
Lohse
, “
Supersonic air flow due to solid-liquid impact
,”
Phys. Rev. Lett.
104
,
024501
(
2010
).
28.
B.
Dollet
,
W.
van Hoeve
,
J.-P.
Raven
,
P.
Marmottant
, and
M.
Versluis
, “
Role of the channel geometry on the bubble pinch-off in flow-focusing devices
,”
Phys. Rev. Lett.
100
(
3
),
034504
(
2008
).
29.
D. C.
Duffy
,
J. C.
McDonald
,
O. J. A.
Schueller
, and
G. M.
Whitesides
, “
Rapid prototyping of microfluidic systems in Poly(dimethylsiloxane)
,”
Anal. Chem.
70
,
4974
(
1998
).
30.
S.
Bhattacharya
,
A.
Datta
,
J. M.
Berg
, and
S.
Gangopadhyay
, “
Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength
,”
J. Microelectromech. Syst.
14
(
3
),
590
(
2005
).
31.
M. A.
Eddings
,
M. A.
Johnson
, and
B. K.
Gale
, “
Determining the optimal PDMS-PDMS bonding technique for microfluidic devices
,”
J. Micromech. Microeng.
18
(
6
),
067001
(
2008
).
32.
R. P. H. M.
Bergmann
,
D.
van der Meer
,
S.
Gekle
,
J. A.
van der Bos
, and
D.
Lohse
, “
Controlled impact of a disk on a water surface: Cavity dynamics
,”
J. Fluid Mech.
633
,
381
(
2009
).
33.
S.
Hilgenfeldt
,
M. P.
Brenner
,
S.
Grossmann
, and
D.
Lohse
, “
Analysis of Rayleigh-Plesset dynamics for sonoluminescing bubbles
,”
J. Fluid Mech.
365
(
5
),
171
(
1998
).
34.
P.
Garstecki
,
I.
Gitlin
,
W.
DiLuzio
,
G. M.
Whitesides
,
E.
Kumacheva
, and
H. A.
Stone
, “
Formation of monodisperse bubbles in a microfluidic flow-focusing device
,”
Appl. Phys. Lett.
85
(
13
),
2649
(
2004
).
You do not currently have access to this content.