A numerical study of the evolution of the multimode planar Richtmyer-Meshkov instability (RMI) in a light-heavy (air-SF6, Atwood number A = 0.67) configuration involving a Mach number Ma = 1.5 shock is carried out. Our results demonstrate that the initial material interface morphology controls the evolution characteristics of RMI (for fixed A, Ma), and provide a significant basis to develop metrics for transition to turbulence. Depending on initial rms slope of the interface, RMI evolves into linear or nonlinear regimes, with distinctly different flow features and growth rates, turbulence statistics, and material mixing rates. We have called this the bipolar behavior of RMI. Some of our findings are not consistent with heuristic notions of mixing in equilibrium turbulence: more turbulent flow—as measured by spectral bandwidth, can be associated with higher material mixing but, paradoxically, to lower integral measures of turbulent kinetic energy and mixing layer width.

1.
M.
Brouillette
, “
The Ritchmyer-Meshkov instability
,”
Annu. Rev. Fluid Mech.
34
,
445
68
(
2002
).
2.
R. D.
Richtmyer
, “
Taylor instability in shock acceleration of compressible fluids
,”
Commun. Pure Appl. Maths.
13
,
297
319
(
1960
).
3.
J. W.
Jacobs
and
J. M.
Sheeley
, “
Experimental study of incompressible Richtmyer-Meshkov instability
,”
Physics of Fluids
8
,
405
15
(
1996
).
4.
G. C.
Orlicz
,
B. J.
Balakuma
,
C. D.
Tomkins
, and
K. P.
Prestridge
, “
A Mach number study of the Richtmyer–Meshkov instability in a varicose, heavy-gas curtain
,”
Phys. Fluids
21
,
064102
(
2009
).
5.
E.
Leinov
,
G.
Malamud
,
Y.
Elbaz
,
A.
Levin
,
G.
Ben-dor
,
D.
Shvarts
, and
O.
Sadot
, “
Experimental and numerical investigation of the Richtmyer–Meshkov instability under reshock conditions
,”
J. Fluid Mech.
626
,
449
75
(
2009
).
6.
O.
Schilling
and
M.
Latini
, “
High-Order WENO simulations of three-dimensional reshocked Richtmyer–Meshkov instability to late times: dynamics, dependence on initial conditions, and comparisons to experimental data
,”
Acta Mathematica Scientia
30B
(
2
),
595
620
(
2010
).
7.
B.
Thornber
,
D.
Drikakis
,
R. J. R.
Williams
, and
D. L.
Youngs
, “
The influence of inial conditions on turbulent mixing due to Richtmyer-Meshkov instability
,”
J. Fluid Mech
.
654
,
99
139
(
2010
).
8.
F. F.
Grinstein
,
A. A.
Gowardhan
, and
A. J.
Wachtor
, “
Simulations of Richtmyer-Meshkov instabilities in planar shock-tube experiments
,”
Phys. Fluids
.
23
,
034106
(
2011
).
9.
Implicit Large Eddy Simulation: Computing Turbulent Flow Dynamics
, edited by
F. F.
Grinstein
,
L. G.
Margolin
, and
W. J.
Rider
,
2nd printing (Cambridge University Press
,
2011
).
10.
M.
Gittings
,
R.
Weaver
,
M.
Clover
,
T.
Betlach
,
N.
Byrne
,
R.
Coker
,
E.
Dendy
,
R.
Hueckstaedt
,
K.
New
,
W. R.
Oakes
,
D.
Ranta
and
R.
Stefan
, “
The RAGE radiation-hydrodynamic code
,”
Comput. Science & Discovery
1
,
015005
(
2008
).
11.
D.
Drikakis
,
C.
Fureby
,
F. F.
Grinstein
, and
D.
Youngs
, “
Simulation of transition and turbulence decay in the Taylor-Green Vortex
,”
J. Turbul.
8
020
(
2007
).
12.
K. R.
Sreenivasan
,
A.
Prabhu
and
R.
Narasimha
, “
Zero-crossings in turbulent signals
,”
J. Fluid Mechanics
137
,
251
272
(
1983
).
13.
Y.
Zhou
, “
Unification and extension of the similarity scaling criteria and mixing transition for studying astrophysics using high energy density laboratory experiments or numerical simulations
,”
Phys Plasmas
14
,
082701
(
2007
).
14.
H.
Tennekes
and
J. L.
Lumley
,
A First Course in Turbulence
(
MIT Press
,
Cambridge, MA
,
1972
).
You do not currently have access to this content.