Flow between concentric spheres of radius ratio η=ri/ro=0.35 is studied in a 3 m diameter experiment. We have measured the torques required to maintain constant boundary speeds as well as localized wall shear stress, velocity, and pressure. At low Ekman number E=2.1×10-7 and modest Rossby number 0.07<Ro<3.4, the resulting flow is highly turbulent with a maximum Reynolds number (Re = Ro/E) exceeding 15 million. Several turbulent flow regimes are evident as Ro is varied for fixed E. We focus our attention on one flow transition, in particular, between Ro = 1.8 and Ro = 2.6, where the flow shows bistable behavior. For Ro within this range, the flow undergoes intermittent transitions between the states observed alone at adjacent Ro outside the switching range. The two states are clearly distinguished in all measured flow quantities, including a striking reduction in torque demanded from the inner sphere by the state lying at higher Ro. The reduced angular momentum transport appears to be associated with the development of a fast zonal circulation near the experiment core. The lower torque state exhibits waves, one of which is similar to an inertial mode known for a full sphere and another which appears to be a strongly advected Rossby-type wave. These results represent a new laboratory example of the overlapping existence of distinct flow states in high Reynolds number flow. Turbulent multiple stability and the resilience of transport barriers associated with zonal flows are important topics in geophysical and astrophysical contexts.

1.
H. P.
Greenspan
,
The Theory Of Rotating Fluids
, Cambridge Monographs on Mechanics and Applied Mathematics Vol.
164
(
Cambridge University Press
,
London
,
1968
).
2.
K.
Zhang
,
P.
Earnshaw
,
X.
Liao
, and
F. H.
Busse
, “
On inertial waves in a rotating fluid sphere
,”
J. Fluid Mech.
437
,
103
(
2001
).
3.
A.
Tilgner
, “
Driven inertial oscillations in spherical shells
,”
Phys. Rev. E
59
,
1789
(
1999
).
4.
M.
Rieutord
,
B.
Georgeot
, and
L.
Valdettaro
, “
Inertial waves in a rotating spherical shell: Attractors and asymptotic spectrum
,”
J. Fluid Mech.
435
,
103
(
2001
).
5.
M.
Rieutord
and
L.
Valdettaro
, “
Inertial waves in a rotating spherical shell
,”
J. Fluid Mech.
341
,
77
(
1997
).
6.
L. M.
Smith
and
F.
Waleffe
, “
Transfer of energy to two-dimensional large scales in forced, rotating three-dimensional turbulence
,”
Phys. Fluids
11
,
1608
(
1999
).
7.
D. H.
Kelley
,
S. A.
Triana
,
D. S.
Zimmerman
,
A.
Tilgner
, and
D. P.
Lathrop
, “
Inertial waves driven by differential rotation in a planetary geometry
,”
Geophys. Astrophys. Fluid Dyn.
101
,
469
(
2007
).
8.
D. H.
Kelley
,
S. A.
Triana
,
D. S.
Zimmerman
, and
D. P.
Lathrop
, “
Selection of inertial modes in spherical Couette flow
,”
Phys. Rev. E
81
,
026311
(
2010
).
9.
N.
Schaeffer
and
P.
Cardin
, “
Rossby-wave turbulence in a rapidly rotating sphere
,”
Nonlinear Processes Geophys.
12
,
947
(
2005
).
10.
D.
Schmitt
,
T.
Alboussière
,
D.
Brito
,
P.
Cardin
,
N.
Gagnière
,
D.
Jault
, and
H. C.
Nataf
, “
Rotating spherical Couette flow in a dipolar magnetic field: Experimental study of magneto-inertial waves
,”
J. Fluid Mech.
604
,
175
(
2008
).
11.
G. P.
Bewley
,
D. P.
Lathrop
,
L. R. M.
Maas
, and
K. R.
Sreenivasan
, “
Inertial waves in rotating grid turbulence
,”
Phys. Fluids
19
,
071701
(
2007
).
12.
X.
Liao
and
K.
Zhang
, “
A new integral property of inertial waves in rotating fluid spheres
,”
Proc. R. Soc. London, Ser. A
465
,
1075
(
2009
).
13.
K.
Zhang
, “
On inertial waves in the Earth’s fluid core
,”
Geophys. Res. Lett.
19
,
737
, doi: (
1992
).
14.
K.
Zhang
, “
Spiraling columnar convection in rapidly rotating spherical fluid shells
,”
J. Fluid Mech.
236
,
535
(
1992
).
15.
J.
Aurnou
and
P.
Olson
, “
Strong zonal winds from thermal convection in a rotating spherical shell
,”
Geophys. Res. Lett.
28
,
2557
, doi: (
2001
).
16.
J.
Aubert
,
D.
Brito
,
H.
Nataf
,
P.
Cardin
, and
J.
Masson
, “
A systematic experimental study of rapidly rotating spherical convection in water and liquid gallium
,”
Phys. Earth Planet. Inter.
128
,
51
(
2001
).
17.
P. L.
Read
,
Y. H.
Yamazaki
,
S. R.
Lewis
,
P. D.
Williams
,
R.
Wordsworth
, and
K.
Miki-Yamazaki
, “
Dynamics of convectively driven banded jets in the laboratory
,”
J. Atmos. Sci.
64
,
4031
(
2007
).
18.
E.
Plaut
,
Y.
Lebranchu
,
R.
Simitev
, and
F. H.
Busse
, “
Reynolds stresses and mean fields generated by pure waves: Applications to shear flows and convection in a rotating shell
,”
J. Fluid Mech.
602
,
303
(
2008
).
19.
A.
Tilgner
, “
Zonal wind driven by inertial modes
,”
Phys. Rev. Lett.
99
,
194501
(
2007
).
20.
C.
Morize
,
M.
Le Bars
,
P.
Le Gal
, and
A.
Tilgner
, “
Experimental determination of zonal winds driven by tides
,”
Phys. Rev. Lett.
104
,
214501
(
2010
).
21.
P.
Wulf
,
C.
Egbers
, and
H.
Rath
, “
Routes to chaos in wide-gap spherical Couette flow
,”
Phys. Fluids
11
,
1359
(
1999
).
22.
R.
Hollerbach
,
M.
Junk
, and
C.
Egbers
, “
Non-axisymmetric instabilities in basic state spherical Couette flow
,”
Fluid Dyn. Res.
38
,
257
(
2006
).
23.
D. R.
Sisan
, “
Hydromagnetic turbulent instability in liquid sodium experiments
,” Ph.D. thesis (
University of Maryland
,
2004
).
24.
D.
Sisan
,
N.
Mujica
,
W.
Tillotson
,
Y.
Huang
,
W.
Dorland
,
A.
Hassam
,
T.
Antonsen
, and
D.
Lathrop
, “
Experimental observation and characterization of the magnetorotational instability
,”
Phys. Rev. Lett.
93
,
114502
(
2004
).
25.
B. R.
Munson
and
M.
Menguturk
, “
Viscous incompressible flow between concentric rotating spheres. Part 3. Linear stability
,”
J. Fluid Mech.
69
,
705
(
1975
).
26.
C.
Egbers
and
H. J.
Rath
, “
The existence of Taylor vortices and wide-gap instabilities in spherical Couette flow
,”
Acta Mech.
111
,
125
(
1995
).
27.
P.
Marcus
and
L.
Tuckerman
, “
Simulation of flow between concentric rotating spheres. Part 2. Transitions
,”
J. Fluid Mech.
185
,
31
(
1987
).
28.
P.
Marcus
and
L.
Tuckerman
, “
Simulation of flow between concentric rotating spheres. Part 1. Steady states
,”
J. Fluid Mech.
185
,
1
(
1987
).
29.
I. N.
Beliaev
,
A. A.
Monakhov
, and
I. M.
Iavorskaia
, “
Stability of spherical Couette flow in thick layers when the inner sphere revolves
,”
Akademiia Nauk SSSR Izvestiia Seriia Fizicheskaia
,
13
,
9
(
1978
).
30.
R.
Hollerbach
,
B.
Futterer
,
T.
More
, and
C.
Egbers
, “
Instabilities of the Stewartson layer. Part 2. Supercritical mode transitions
,”
Theor. Comput. Fluid Dyn.
18
,
197
(
2004
).
31.
D. Y.
Zhilenko
,
S. Y.
Gertsenshtein
, and
O. E.
Krivonosova
, “
Laminar-turbulent transition in spherical Couette flow for counter-rotating boundaries
,”
Fluid Dyn.
36
,
217
(
2001
).
32.
N.
Schaeffer
and
P.
Cardin
, “
Quasigeostrophic model of the instabilities of the Stewartson layer in flat and depth-varying containers
,”
Phys. Fluids
17
,
104111
(
2005
).
33.
H. C.
Nataf
,
T.
Alboussière
,
D.
Brito
,
P.
Cardin
,
N.
Gagnière
,
D.
Jault
,
J. P.
Masson
, and
D.
Schmitt
, “
Experimental study of super-rotation in a magnetostrophic spherical Couette flow
,”
Geophys. Astrophys. Fluid Dyn.
100
,
281
(
2006
).
34.
H.-C.
Nataf
,
T.
Alboussière
,
D.
Brito
,
P.
Cardin
,
N.
Gagnière
,
D.
Jault
, and
D.
Schmitt
, “
Rapidly rotating spherical Couette flow in a dipolar magnetic field: An experimental study of the mean axisymmetric flow
,”
Phys. Earth Planet. Inter.
170
,
60
(
2008
).
35.
K.
Stewartson
, “
On almost rigid rotations. Part 2
,”
J. Fluid Mech.
26
,
131
(
1966
).
36.
R.
Hollerbach
, “
Instabilities of the Stewartson layer. Part 1. The dependence on the sign of Ro
,”
J. Fluid Mech.
492
,
289
(
2003
).
37.
C.
Guervilly
and
P.
Cardin
, “
Numerical simulations of dynamos generated in spherical Couette flows
,”
Geophys. Astrophys. Fluid Dyn.
104
,
221
(
2010
).
38.
M.
Schmeits
and
H.
Dijkstra
, “
Bimodal behavior of the Kuroshio and the Gulf stream
,”
J. Phys. Oceanogr.
31
,
3435
(
2001
).
39.
K.
Bowman
, “
Rossby wave phase speeds and mixing barriers in the stratosphere. Part 1. Observations
,”
J. Atmos. Sci.
53
,
905
(
1996
).
40.
I. I.
Rypina
,
M. G.
Brown
, F.
J.
Beron-Vera
,
H.
Koak
,
M. J.
Olascoaga
, and
I. A.
Udovydchenkov
, “
On the lagrangian dynamics of atmospheric zonal jets and the permeability of the stratospheric polar vortex
,”
J. Atmos. Sci.
64
,
3595
(
2007
).
41.
P.
Haynes
, “
Stratospheric dynamics
,”
Annu. Rev. Fluid Mech.
37
,
263
(
2005
).
42.
K.
Sreenivasan
,
A.
Bershadskii
, and
J.
Niemela
, “
Mean wind and its reversal in thermal convection
,”
Phys. Rev. E
65
,
056306
(
2002
).
43.
N.
Mujica
and
D.
Lathrop
, “
Hysteretic gravity-wave bifurcation in a highly turbulent swirling flow
,”
J. Fluid Mech.
551
,
49
(
2006
).
44.
F.
Ravelet
,
L.
Marie
,
A.
Chiffaudel
, and
F.
Daviaud
, “
Multistability and memory effect in a highly turbulent flow: Experimental evidence for a global bifurcation
,”
Phys. Rev. Lett.
93
,
164501
(
2004
).
45.
A.
de la Torre
and
J.
Burguete
, “
Slow dynamics in a turbulent von Kármán swirling flow
,”
Phys. Rev. Lett.
99
,
054101
(
2007
).
46.
P.-P.
Cortet
,
A.
Chiffaudel
,
F.
Daviaud
, and
B.
Dubrulle
, “
Experimental evidence of a phase transition in a closed turbulent flow
,”
Phys. Rev. Lett.
105
,
214501
(
2010
).
47.
R.
Monchaux
,
M.
Berhanu
,
S.
Aumaitre
,
A.
Chiffaudel
,
F.
Daviaud
,
B.
Dubrulle
,
F.
Ravelet
,
S.
Fauve
,
N.
Mordant
,
F.
Petrelis
,
M.
Bourgoin
,
P.
Odier
,
J.-F.
Pinton
,
N.
Plihon
, and
R.
Volk
, “
The von Kármán sodium experiment: Turbulent dynamical dynamos
,”
Phys. Fluids
21
,
069901
(
2009
).
48.
M.
Berhanu
,
R.
Monchaux
,
S.
Fauve
,
N.
Mordant
,
F.
Petrelis
,
A.
Chiffaudel
,
F.
Daviaud
,
B.
Dubrulle
,
L.
Marie
,
F.
Ravelet
,
M.
Bourgoin
,
P.
Odier
,
J.-F.
Pinton
, and
R.
Volk
, “
Magnetic field reversals in an experimental turbulent dynamo
,”
EPL
77
,
59001
(
2007
).
49.
J. W.
Connor
and
H. R.
Wilson
, “
A review of theories of the L-H transition
,”
Plasma Phys. Controlled Fusion
42
,
R1
(
2000
).
50.
P. N.
Guzdar
,
R. G.
Kleva
,
A.
Das
, and
P. K.
Kaw
, “
Zonal flow and zonal magnetic field generation by finite β drift waves: A theory for low to high transitions in tokamaks
,”
Phys. Rev. Lett.
87
,
015001
(
2001
).
51.
R. G.
Kleva
and
P. N.
Guzdar
, “
Zonal flow sawteeth and the time period between edge-localized transport bursts in tokamaks
,”
Phys. Plasmas
14
,
012303
(
2007
).
52.
D. P.
Lathrop
,
J.
Fineberg
, and
H. L.
Swinney
, “
Transition to shear-driven turbulence in Couette-Taylor flow
,”
Phys. Rev. A
46
,
6390
(
1992
).
53.
G.
Lewis
and
H.
Swinney
, “
Velocity structure functions, scaling, and transitions in high-Reynolds-number Couette-Taylor flow
,”
Phys. Rev. E
59
,
5457
(
1999
).
54.
F.
Wendt
, “
Turbulente strömungen zwischen zwei rotierenden konaxialen zylindern
,”
Ing.-Arch.
4
,
577
(
1933
).
55.
M. S.
Paoletti
and
D. P.
Lathrop
, “
Angular momentum transport in turbulent flow between independently rotating cylinders
,”
Phys. Rev. Lett.
106
,
024501
(
2011
).
56.
D.
P.M.
van Gils
,
S. G.
Huisman
,
G.-W.
Bruggert
,
C.
Sun
, and
D.
Lohse
, “
Torque scaling in turbulent Taylor-Couette flow with co- and counterrotating cylinders
,”
Phys. Rev. Lett.
106
,
024502
(
2011
).
57.
F.
Ravelet
,
R.
Delfos
, and
J.
Westerweel
, “
Influence of global rotation and Reynolds number on the large-scale features of a turbulent Taylor-Couette flow
,”
Phys. Fluids
22
,
055103
(
2010
).
58.
D.
Lathrop
,
J.
Fineberg
, and
H.
Swinney
, “
Turbulent flow between concentric rotating cylinders at large Reynolds number
,”
Phys. Rev. Lett.
68
,
1515
(
1992
).
59.
P. L.
Read
,
Y. H.
Yamazaki
,
S. R.
Lewis
,
P. D.
Williams
,
K.
Miki-Yamazaki
,
J.
Sommeria
,
H.
Didelle
, and
A.
Fincham
, “
Jupiter’s and Saturn’s convectively driven banded jets in the laboratory
,”
Geophys. Res. Lett.
31
,
L22701
, doi: (
2004
).
60.
T. J.
Dunkerton
and
R. K.
Scott
, “
A barotropic model of the angular momentum-conserving potential vorticity staircase in spherical geometry
,”
J. Atmos. Sci.
65
,
1105
(
2008
).
61.
R. B.
Wood
and
M. E.
McIntyre
, “
A general theorem on angular-momentum changes due to potential vorticity mixing and on potential-energy changes due to buoyancy mixing
,”
J. Atmos. Sci.
67
,
1261
(
2010
).
62.
A.
Provenzale
, “
Transport by coherent barotropic vortices
,”
Annu. Rev. Fluid Mech.
31
,
55
(
1999
).
63.
F. H.
Busse
,
K.
Zhang
, and
X.
Liao
, “
On slow inertial waves in the solar convection zone
,”
Astrophys. J.
631
,
L171
(
2005
).
64.
C.-G.
Rossby
, “
Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action
,”
J. Mar. Res.
2
,
38
(
1939
).
65.
C.-G.
Rossby
, “
Planetary flow patterns in the atmosphere
,”
Q. J. R. Meteorol. Soc.
66
,
68
(
1940
).
66.
C.-G.
Rossby
, “
On the propagation of frequencies and energy in certain types of oceanic and atmospheric waves
,”
J. Meteorol.
2
,
187
(
1945
).
67.
R. E.
Dickinson
, “
Rossby waves—Long-period oscillations of oceans and atmospheres
,”
Annu. Rev. Fluid Mech.
10
,
159
(
1978
).
68.
A.
Barcilon
and
P.
Drazin
, “
Nonlinear waves of vorticity
,”
Stud. Appl. Math.
106
,
437
(
2001
).
69.
K.
Zhang
and
X.
Liao
, “
A new asymptotic method for the analysis of convection in a rapidly rotating sphere
,”
J. Fluid Mech.
518
,
319
(
2004
).
70.
O.
Onishchenko
,
O.
Pokhotelov
,
R.
Sagdeev
,
P.
Shukla
, and
L.
Stenflo
, “
Generation of zonal flows by Rossby waves in the atmosphere
,”
Nonlinear Processes Geophys.
11
,
241
(
2004
).
71.
D. G.
Dritschel
and
M. E.
McIntyre
, “
Multiple jets as PV staircases: The Phillips effect and the resilience of eddy-transport barriers
,”
J. Atmos. Sci.
65
,
855
(
2008
).
72.
J.
Aurnou
,
M.
Heimpel
, and
J.
Wicht
, “
The effects of vigorous mixing in a convective model of zonal flow on the ice giants
,”
Icarus
190
,
110
(
2007
).
73.
A. S.
Brun
and
A.
Palacios
, “
Numerical simulations of a rotating red giant star. I.Three-dimensional models of turbulent convection and associated mean flows
,”
Astrophys. J.
702
,
1078
(
2009
).
74.
P. A.
Gilman
, “
Nonlinear dynamics of boussinesq convection in a deep rotating spherical shell. I
,”
Geophys. Astrophys. Fluid Dyn.
8
,
93
(
1977
).
75.
G. P.
King
,
Y.
Li
,
W.
Lee
,
H. L.
Swinney
, and
P. S.
Marcus
, “
Wave speeds in wavy Taylor-vortex flow
,”
J. Fluid Mech.
141
,
365
(
1984
).
You do not currently have access to this content.