In this paper, we have experimentally investigated the velocity profile of a fluid undergoing simple shear above a porous medium. To this end, we used for the first time rheological tests performed with a constant stress rheometer equipped with parallel plate geometry with a real porous medium glued on the lower plate. The velocity at the interface between the porous layer and the free fluid was inferred by extrapolating the linear velocity profile in the free fluid to the interface. These data were nicely compared with predictions obtained integrating the Brinkman extension of Darcy law in the porous medium together with Stokes equations in the free fluid coupled at the interface by the continuity of velocity and by the momentum balance suggested by Ochoa-Tapia and Whitaker [Int. J. Heat Mass Transfer 38(14), 2635 (1995)]. In the literature, the physical origin of the stress jump imposed by Ochoa-Tapia and Whitaker at the interface has been attributed to a perturbation of the velocity profile in the vicinity of the interface, both in the porous medium and in the free fluid. For the first time, the disturbance in the free fluid has been measured and quantified resulting in a satisfactory agreement with theoretical predictions.

1.
G. S.
Beavers
and
D. D.
Joseph
, “
Boundary conditions at a naturally permeable wall
,”
J. Fluid Mech.
30
(
1
),
197
(
1967
).
2.
G.
Neale
and
W.
Nader
, “
Practical significance of Brinkman’s extension of Darcy’s law: Coupled parallel flows within a channel and a bounding porous medium
,”
Can. J. Chem. Eng.
52
(
4
),
475
(
1974
).
3.
K.
Vafai
and
S. J.
Kim
, “
Fluid mechanics of the interface region between a porous medium and a fluid layer—An exact solution
,”
Int. J. Heat Fluid Flow
11
(
3
),
254
(
1990
).
4.
R. C.
Givler
and
S. A.
Altobelli
, “
A determination of the effective viscosity for the Brinkman & Forchheimer flow model
,”
J. Fluid Mech.
258
(
1
),
355
(
1994
).
5.
B.
Goyeau
,
D.
Lhuillier
,
D.
Gobin
, and
M. G.
Velarde
, “
Momentum transport at a fluid-porous interface
,”
Int. J. Heat Mass Transfer
46
(
21
),
4071
(
2003
).
6.
A.
Goharzadeh
,
A.
Khalili
, and
B. B.
Jorgensen
, “
Transition layer thickness at a fluid-porous interface
,”
Phys. Fluids
17
(
5
),
057102
(
2005
).
7.
M.
Chandesris
and
D.
Jamet
, “
Boundary conditions at a planar fluid-porous interface for a Poiseuille flow
,”
Int. J. Heat Mass Transfer
49
(
13–14
),
2137
(
2006
).
8.
M.
Morad
and
A.
Khalili
, “
Transition layer thickness in a fluid-porous medium of multi-sized spherical beads
,”
Exp. Fluids
46
(
2
),
323
(
2009
).
9.
A. A.
Hill
and
B.
Straughan
, “
Poiseuille flow in a fluid overlying a highly porous material
,”
Adv. Water Res.
32
(
11
),
1609
(
2009
).
10.
M.
Sahraoui
and
M.
Kaviany
, “
Slip and no-slip velocity boundary conditions at the surface of porous, plain media
,”
Int. J. Heat Mass Transfer
35
,
927
(
1992
).
11.
G. I.
Taylor
, “
A model for the boundary condition of a porous material. Part 1
,”
J. Fluid Mech.
49
(
2
),
319
(
1971
).
12.
A. S.
Sangani
and
S.
Behl
, “
The planar singular solutions of Stokes and Laplace equations and their application to transport processes near porous surfaces
,”
Phys. Fluids A
1
(
1
),
21
(
1989
).
13.
M. F.
Tachie
,
D. F.
James
, and
I. G.
Currie
, “
Velocity measurements of a shear flow penetrating a porous medium
,”
J. Fluid Mech.
493
(
1
),
319
(
2003
).
14.
G. S.
Beavers
,
E. M.
Sparrow
, and
R. A.
Magnuson
, “
Experiments on coupled flows in a channel and a bounding porous medium
,”
J. Basic Eng.
92
(
D
),
843
(
1970
).
15.
R. E.
Larson
and
J. J. L.
Higdon
, “
Microscopic flow near the surface of two-dimensional porous media. Part 1. Axial flow
,”
J. Fluid Mech.
166
(
1
),
449
(
1986
).
16.
R. E.
Larson
and
J. J. L.
Higdon
, “
Microscopic flow near the surface of two-dimensional porous media. Part 2. Transverse flow
,”
J. Fluid Mech.
178
(
1
),
119
(
1987
).
17.
M.
Kaviany
,
Principles of Heat Transfer in Porous Media
(
Springer
,
New York
,
1995
).
18.
D. F.
James
and
A. M. J.
Davis
, “
Flow at the interface of a model fibrous porous medium
,”
J. Fluid Mech.
426
(
1
),
47
(
2001
).
19.
A. M. J.
Davis
and
D. F.
James
, “
Penetration of shear flow into an array of rods aligned with the flow
,”
Can. J. Chem. Eng.
82
(
6
),
1169
(
2004
).
20.
J. A.
Ochoa
-Tapia and
S.
Whitaker
, “
Momentum transfer at the boundary between a porous medium and a homogeneous fluid—I. Theoretical development
,”
Int. J. Heat Mass Transfer
38
(
14
),
2635
(
1995
).
21.
J. A.
Ochoa
-Tapia and
S.
Whitaker
, “
Momentum transfer at the boundary between a porous medium and a homogeneous fluid—II. Comparison with experiment
,”
Int. J. Heat Mass Transfer
38
(
14
),
2647
(
1995
).
22.
S. K.
Gupte
and
S. G.
Advani
, “
Flow near the permeable boundary of a porous medium: An experimental investigation using LDA
,”
Exp. Fluids
22
(
5
),
408
(
1997
).
23.
M.
Agelinchaab
,
M. F.
Tachie
, and
D. W.
Ruth
, “
Velocity measurement of flow through a model three-dimensional porous medium
,”
Phys. Fluids
18
(
1
),
017105
(
2006
).
24.
S.
Kim
and
W. B.
Russel
, “
Modelling of porous media by renormalization of the Stokes equations
,”
J. Fluid Mech
154
(
1
),
269
(
1985
).
25.
K.
Vafai
and
R.
Thiyagaraja
, “
Analysis of flow and heat transfer at the interface region of a porous medium
,”
Int. J. Heat Mass Transfer
30
(
7
),
1391
(
1987
).
26.
A. V.
Kuznetsov
, “
Influence of the stress jump condition at the porous-medium/clear-fluid interface on a flow at a porous wall
,”
Int. Commun. Heat Mass Transfer
24
(
3
),
401
(
1997
).
27.
L.
Durlofsky
and
J. F.
Brady
, “
Analysis of the Brinkman equation as a model for flow in porous media
,”
Phys. Fluids
30
(
11
),
3329
(
1987
).
28.
J. K.
Arthur
,
D. W.
Ruth
, and
M. F.
Tachie
, “
PIV measurements of flow through a model porous medium with varying boundary conditions
,”
J. Fluid Mech.
629
,
343
(
2009
).
29.
S. K.
Gupte
and
S. G.
Advani
, “
Flow near the permeable boundary of aligned fiber preform
,”
Polym. Compos.
18
,
114
(
1997
).
30.
H. C.
Brinkman
, “
A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles
,”
Appl. Sci. Res.
A1
,
27
(
1947
).
31.
P. G.
Saffman
, “
On the boundary condition at the surface of a porous medium
,”
Stud. Appl. Math.
50
,
93
(
1971
).
32.
D.
Nield
and
A.
Bejan
,
Convection in Porous Media
(
Springer
,
New York
,
1992
).
33.
B.
Alazmi
and
K.
Vafai
, “
Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer
,”
Int. J. Heat Mass Transfer
44
(
9
),
1735
(
2001
).
34.
P. M.
Adler
and
P. M.
Mills
, “
Motion and rupture of a porous sphere in a linear flow field
,”
J. Rheol.
23
(
1
),
25
(
1979
).
35.
K. F.
Freed
and
M.
Muthukumar
, “
On the Stokes problem for a suspension of spheres at finite concentrations
,”
J. Chem. Phys.
68
(
5
),
2088
(
1978
).
36.
J.
Koplik
,
H.
Levine
, and
A.
Zee
, “
Viscosity renormalization in the Brinkman equation
,”
Phys. Fluids
26
(
10
),
2864
(
1983
).
37.
A. R.
Altenberger
,
J. S.
Dahler
, and
M. V.
Tirrell
, “
A mean-field theory of suspension viscosity
,”
Macromolecules
18
(
12
),
2752
(
1985
).
38.
T. S.
Lundgren
, “
Slow flow through stationary random beds and suspensions of spheres
,”
J. Fluid Mech.
51
,
273
(
1972
).
39.
K.
Vafai
and
S. J.
Kim
, “
On the limitations of the Brinkman-Forchheimer-extended Darcy equation
,”
Int. J. Heat Fluid Flow
16
(
1
),
11
(
1995
).
40.
D.
Nield
, “
The Beavers-Joseph boundary condition and related matters: A historical and critical note
,”
Transp. Porous Media
78
(
3
),
537
(
2009
).
41.
W. P.
Breugem
,
B. J.
Boersma
, and
R. E.
Uittenbogaard
, “
The laminar boundary layer over a permeable wall
,”
Transp. Porous Media
59
(
3
),
267
(
2005
).
42.
J.
Kozeny
, “
Über kapillare Leitung des Wassers im Boden
,”
Sitzungberichte der Oesterreichischen Akademie der Wissenschaften Wien
136
,
271
(
1927
).
43.
P. C.
Carman
, “
Fluid flow through a granular bed
,”
Trans. Inst. Chem. Eng. (London)
15
,
150
(
1937
)
You do not currently have access to this content.