A comprehensive description is obtained of the two-dimensional steady gravity-driven flow with prescribed volume flux of a thin film of Newtonian fluid with temperature-dependent viscosity on a stationary horizontal cylinder. When the cylinder is uniformly hotter than the surrounding atmosphere (positive thermoviscosity), the effect of increasing the heat transfer to the surrounding atmosphere at the free surface is to increase the average viscosity and hence reduce the average velocity within the film, with the net effect that the film thickness (and hence the total fluid load on the cylinder) is increased to maintain the fixed volume flux of fluid. When the cylinder is uniformly colder than the surrounding atmosphere (negative thermoviscosity), the opposite occurs. Increasing the heat transfer at the free surface from weak to strong changes the film thickness everywhere (and hence the load, but not the temperature or the velocity) by a constant factor which depends only on the specific viscosity model considered. The effect of increasing the thermoviscosity is always to increase the film thickness and hence the load. In the limit of strong positive thermoviscosity, the velocity is small and uniform outside a narrow boundary layer near the cylinder leading to a large film thickness, while in the limit of strong negative thermoviscosity, the velocity increases from zero at the cylinder to a large value at the free surface leading to a small film thickness.

1.
W.
Nusselt
, “
Die Oberflächenkondensation des Wasserdampfes
,”
Z. Ver. dtsch. Ing.
60
,
541
(
1916
).
2.
W.
Nusselt
, “
Die Oberflächenkondensation des Wasserdampfes
,”
Z. Ver. dtsch. Ing.
60
,
569
(
1916
).
3.
E. M.
Sparrow
and
J. L.
Gregg
, “
Laminar condensation heat transfer on a horizontal cylinder
,”
J. Heat Transfer
81
,
291
(
1959
).
4.
A. A.
Nicol
,
Z. L.
Aidoun
,
R. J.
Gribben
, and
G.
Wilks
, “
Heat transfer in the presence of condensate drainage
,”
Int. J. Multiphase Flow
14
,
349
(
1988
).
5.
J.-J.
Shu
and
G.
Wilks
, “
Heat transfer in the flow of a cold, two-dimensional draining sheet over a hot, horizontal cylinder
,”
Eur. J. Mech. B/Fluids
28
,
185
(
2009
).
6.
I. G.
Shekriladze
and
V. I.
Gomelauri
, “
Theoretical study of laminar film condensation of flowing vapour
,”
Int. J. Heat Mass Transfer
9
,
581
(
1966
).
7.
T.
Fujii
,
H.
Uehara
, and
C.
Kurata
, “
Laminar filmwise condensation of flowing vapour on a horizontal cylinder
,”
Int. J. Heat Mass Transfer
15
,
235
(
1972
).
8.
J. W.
Rose
, “
Effect of pressure gradient in forced convection film condensation on a horizontal tube
,”
Int. J. Heat Mass Transfer
27
,
39
(
1984
).
9.
C.-K.
Chen
and
Y.-T.
Lin
, “
Laminar film condensation from a downward-flowing steam-air mixture onto a horizontal circular tube
,”
Appl. Math. Model.
33
,
1944
(
2009
).
10.
P. K.
Sarma
,
B.
Vijayalakshmi
,
F.
Mayinger
, and
S.
Kakac
, “
Turbulent film condensation on a horizontal tube with external flow of pure vapors
,”
Int. J. Heat Mass Transfer
41
,
537
(
1998
).
11.
S.-A.
Yang
and
Y.-T.
Lin
, “
Turbulent film condensation on a non-isothermal horizontal tube - effect of eddy diffusivity
,”
Appl. Math. Model.
29
,
1149
(
2005
).
12.
S.-A.
Yang
and
C.-H.
Hsu
, “
Free- and forced-convection film condensation from a horizontal elliptic tube with a vertical plate and a horizontal [sic] tube as special cases
,”
Int. J. Heat Fluid Flow
18
,
567
(
1997
).
13.
Y.-T.
Lin
and
S.-A.
Yang
, “
Turbulent film condensation on a horizontal elliptical tube
,”
Heat Mass Transfer
41
,
495
(
2005
).
14.
B.
Reisfeld
and
S. G.
Bankoff
, “
Non-isothermal flow of a liquid film on a horizontal cylinder
,”
J. Fluid Mech.
236
,
167
(
1992
).
15.
A. T.
Conlisk
and
J.
Mao
, “
Nonisothermal absorption on a horizontal cylindrical tube-1. The film flow
,”
Chem. Eng. Sci.
51
,
1275
(
1996
).
16.
D.
Goussis
and
R. E.
Kelly
, “
Effects of viscosity variation on the stability of film flow down heated or cooled inclined surfaces: Long-wavelength analysis
,”
Phys. Fluids
28
,
3207
(
1985
).
17.
D. A.
Goussis
and
R. E.
Kelly
, “
Effects of viscosity variation on the stability of a liquid film flow down heated or cooled inclined surfaces: Finite wavelength analysis
,”
Phys. Fluids
30
,
974
(
1987
).
18.
C.-C.
Hwang
and
C.-I.
Weng
, “
Non-linear stability analysis of film flow down a heated or cooled inclined plane with viscosity variation
,”
Int. J. Heat Mass Transfer
31
,
1775
(
1988
).
19.
B.
Reisfeld
and
S. G.
Bankoff
, “
Nonlinear stability of a heated thin liquid film with variable viscosity
,”
Phys. Fluids A
2
,
2066
(
1990
).
20.
M.-C.
Wu
and
C.-C.
Hwang
, “
Nonlinear theory of film rupture with viscosity variation
,”
Int. Commun. Heat Mass Transfer
18
,
705
(
1991
).
21.
R.
Selak
and
G.
Lebon
, “
Bénard-Marangoni thermoconvective instability in presence of a temperature-dependent viscosity
,”
J. Phys. II (France)
3
,
1185
(
1993
).
22.
D.
Bercovici
, “
A theoretical model of cooling viscous gravity currents with temperature-dependent viscosity
,”
Geophys. Res. Lett.
21
,
1177
, doi:10.1029/94GL01124 (
1994
).
23.
N. J.
Balmforth
and
R. V.
Craster
, “
Dynamics of cooling domes of viscoplastic fluid
,”
J. Fluid Mech.
422
,
225
(
2000
).
24.
Y. O.
Kabova
and
V. V.
Kuznetsov
, “
Downward flow of a nonisothermal thin liquid film with variable viscosity
,”
J. Appl. Mech. Tech. Phys.
43
,
895
(
2002
).
25.
S. K.
Wilson
and
B. R.
Duffy
, “
On the gravity-driven draining of a rivulet of fluid with temperature-dependent viscosity down a uniformly heated or cooled substrate
,”
J. Eng. Math.
42
,
359
(
2002
).
26.
S. K.
Wilson
and
B. R.
Duffy
, “
Strong temperature-dependent-viscosity effects on a rivulet draining down a uniformly heated or cooled slowly varying substrate
,”
Phys. Fluids
15
,
827
(
2003
).
27.
B. R.
Duffy
and
S. K.
Wilson
, “
A rivulet of perfectly wetting fluid with temperature-dependent viscosity draining down a uniformly heated or cooled slowly varying substrate
,”
Phys. Fluids
15
,
3236
(
2003
).
28.
A.
Sansom
,
J. R.
King
, and
D. S.
Riley
, “
Degenerate-diffusion models for the spreading of thin non-isothermal gravity currents
,”
J. Eng. Math.
48
,
43
(
2004
).
29.
R.
Usha
,
R.
Ravindran
, and
B.
Uma
, “
Dynamics and stability of a thin liquid film on a heated rotating disk film with variable viscosity
,”
Phys. Fluids
17
,
102103
(
2005
).
30.
L.
Wu
, “
Spin coating of thin liquid films on an axisymmetrically heated disk
,”
Phys. Fluids
18
,
063602
(
2006
).
31.
C.-K.
Lin
,
C.-C.
Hwang
, and
T.-C.
Ke
, “
Three-dimensional nonlinear rupture theory of thin liquid films on a cylinder
,”
J. Colloid Interface Sci.
256
,
480
(
2002
).
32.
A. A.
King
,
L. J.
Cummings
,
S.
Naire
, and
O. E.
Jensen
, “
Liquid film dynamics in horizontal and tilted tubes: Dry spots and sliding drops
,”
Phys. Fluids
19
,
042102
(
2007
).
33.
L. R.
Band
,
D. S.
Riley
,
P. C.
Matthews
,
J. M.
Oliver
, and
S. L.
Waters
, “
Annular thin-film flows driven by azimuthal variations in interfacial tension
,”
Q. J. Mech. Appl. Math.
62
,
403
(
2009
).
34.
O.
Haimovich
and
A.
Oron
, “
Nonlinear dynamics of a thin liquid film on an axially oscillating cylindrical surface
,”
Phys. Fluids
22
,
032101
(
2010
).
35.
H. K.
Moffatt
, “
Behaviour of a viscous film on the outer surface of a rotating cylinder
,”
J. Méc.
16
,
651
(
1977
).
36.
V. V.
Pukhnachev
, “
Motion of a liquid film on the surface of a rotating cylinder in a gravitational field
,”
J. Appl. Mech. Tech. Phys.
18
,
344
(
1977
).
37.
R. E.
Johnson
, “
Steady-state coating flows inside a rotating horizontal cylinder
,”
J. Fluid Mech.
190
,
321
(
1988
).
38.
B. R.
Duffy
and
S. K.
Wilson
, “
Thin-film and curtain flows on the outside of a rotating horizontal cylinder
,”
J. Fluid Mech.
394
,
29
(
1999
).
39.
J.
Ashmore
,
A. E.
Hosoi
, and
H. A.
Stone
, “
The effect of surface tension on rimming flows in a partially filled rotating cylinder
,”
J. Fluid Mech.
479
,
65
(
2003
).
40.
M.
Villegas-Díaz
,
H.
Power
, and
D. S.
Riley
, “
Analytical and numerical studies of the stability of thin-film rimming flow subject to surface shear
,”
J. Fluid Mech.
541
,
317
(
2005
).
41.
E. S.
Benilov
,
M. S.
Benilov
, and
N.
Kopteva
, “
Steady rimming flows with surface tension
,”
J. Fluid Mech.
597
,
91
(
2008
).
42.
P. L.
Evans
,
L. W.
Schwartz
, and
R. V.
Roy
, “
Three-dimensional solutions for coating flow on a rotating horizontal cylinder: Theory and experiment
,”
Phys. Fluids
17
,
072102
(
2005
).
43.
M. A.
Kelmanson
, “
On inertial effects in the Moffatt-Pukhnachov coating-flow problem
,”
J. Fluid Mech.
633
,
327
(
2009
).
44.
R.
Hunt
, “
Numerical solution of the free-surface viscous flow on a horizontal rotating elliptical cylinder
,”
Numer. Methods Partial Differ. Equ.
24
,
1094
(
2008
).
45.
B. R.
Duffy
and
S. K.
Wilson
, “
Large-Biot-number non-isothermal flow of a thin film on a stationary or rotating cylinder
,”
Eur. Phys. J. Spec. Top.
166
,
147
(
2009
).
46.
I. S.
Gradshteyn
and
I. M.
Ryzhik
,
Tables of Integrals, Series and Products
, 2nd ed. (
Academic
,
New York
,
1980
), pp.
904
925
.
You do not currently have access to this content.