Direct numerical simulation data from the self similar region of a planar mixing layer is filtered at four different length scales, from the Taylor microscale to the dissipative scales, and is used to examine the scale dependence of the strain-rotation interaction in shear flow turbulence. The interaction is examined by exploring the alignment between the extensive strain-rate eigenvector and the vorticity vector. Results show that the mechanism for enstrophy amplification (propensity of which increases when the two vectors are parallel) is scale dependent with the probability of the two vectors being parallel higher for larger length scales. However, the mechanism for enstrophy attenuation, i.e., the probability of the two vectors being perpendicular to each other, appears to be scale independent.

1.
P.
Vieillefosse
, “
Local interaction between vorticity and shear in a perfect incompressible fluid
,”
J. Phys.
43
(
6
),
837
(
1982
).
2.
H.
Tennekes
and
J. L.
Lumley
,
A First Course in Turbulence
(
MIT
,
Cambridge, MA
,
1972
).
3.
A.
Tsinober
,
M.
Ortenberg
, and
L.
Shtilman
, “
On depression of nonlinearity in turbulence
,”
Phys. Fluids
11
(
8
),
2291
(
1999
).
4.
R. J.
Betchov
, “
An inequality concerning the production of vorticity in isotropic turbulence
,”
J. Fluid Mech.
1
,
497
(
1956
).
5.
A.
Tsinober
,
L.
Shtilman
, and
H.
Vaisburd
, “
A study of properties of vortex stretching and enstophy generation in numerical and laboratory turbulence
,”
Fluid Dyn. Res.
21
,
477
(
1997
).
6.
W. T.
Ashurst
,
A. R.
Kerstein
,
R. M.
Kerr
, and
C. H.
Gibson
, “
Alignment of vorticity and scalar gradient with strain rate in simulated Navier-Stokes turbulence
,”
Phys. Fluids
30
,
2343
(
1987
).
7.
J.
Jiménez
, “
Kinematic alignment effects in turbulent flows
,”
Phys. Fluids A
4
(
4
),
652
(
1992
).
8.
A.
Tsinober
,
E.
Kit
, and
T.
Dracos
, “
Experimental investigation of the field of velocity gradients in turbulent flows
,”
J. Fluid Mech.
242
,
169
(
1992
).
9.
P. E.
Hamlington
,
J.
Schumacher
, and
W. J. A.
Dahm
, “
Direct assessment of vorticity alignment with local and nonlocal strain rates in turbulent flows
,”
Phys. Fluids
20
(
111703
),
1
(
2008
).
10.
J. A.
Mullin
and
W. J. A.
Dahm
, “
Dual-plane stereo particle image velocimetry measurements of velocity gradient tensor fields in turbulent shear flow II.Experimental results
,”
Phys. Fluids
18
(
035102
),
1
(
2006
).
11.
B.
Ganapathisubramani
,
K.
Lakshminarasimhan
, and
N. T.
Clemens
, “
Investigation of three-dimensional structure of fine-scales in a turbulent jet by using cinematographic stereoscopic PIV
,”
J. Fluid Mech.
598
,
141
(
2008
).
12.
D. H.
Porter
,
P. R.
Woodward
, and
A.
Pouquet
, “
Inertial range structures in decaying compressible turbulent flows
,”
Phys. Fluids
10
(
1
),
237
(
1998
).
13.
M. S.
Chong
,
A. E.
Perry
, and
B. J.
Cantwell
, “
A general classification of three-dimensional flow fields
,”
Phys. Fluids A
2
(
5
),
765
(
1990
).
14.
A. A.
Townsend
, “
On the fine-scale structure of turbulence
,”
Proc. R. Soc. Lond. A
208
(
1095
),
534
(
1951
).
15.
A. E.
Perry
and
M. S.
Chong
, “
Topology of flow patterns in vortex motions and turbulence
,”
Appl. Sci. Res.
53
,
357
(
1994
).
16.
J.
Zhou
,
R. J.
Adrian
,
S.
Balachandar
, and
T. M.
Kendall
, “
Mechanisms for generating coherent packets of hairpin vortices in channel flow
,”
J. Fluid Mech.
387
,
353
(
1999
).
17.
G. I.
Taylor
, “
Production and dissipation of vorticity in a turbulent fluid
,”
Proc. R. Soc. Lond. A
164
(
916
),
15
(
1938
).
18.
O. R. H.
Buxton
and
B.
Ganapathisubramani
, “
Amplification of enstrophy in the far field of an axisymmetric turbulent jet
,”
J. Fluid Mech.
651
,
483
(
2010
).
19.
M.
Kholmyansky
,
A.
Tsinober
, and
S.
Yorish
, “
Velocity derivatives in the atmospheric surface layer at Reλ = 104
,”
Phys. Fluids
13
(
1
),
311
(
2001
).
20.
S.
Laizet
and
E.
Lamballais
, “
High-order compact schemes for incompressible flows: A simple and efficient method with quasi-spectral accuracy
,”
J. Comp. Phys.
228
(
16
),
5989
(
2009
).
21.
S.
Laizet
,
S.
Lardeau
, and
E.
Lamballais
, “
Direct numerical simulation of a mixing layer downstream a thick splitter plate
,”
Phys. Fluids
22
(
015104
),
1
(
2010
).
You do not currently have access to this content.