Numerical solution of the classical problem of relative equilibria for identical point vortices on the unbounded plane reveals configurations that are very close to the analytically known, centered, symmetrically arranged, nested equilateral triangles. New numerical solutions of this kind are found for 3n + 1 vortices, where n = 2, 3, ..., 30. A sufficient, although apparently not necessary, condition for this phenomenon of close solutions is that the “core” of the configuration is marginally stable, as occurs for a central vortex surrounded by an equilateral triangle. The open, regular heptagon also has this property, and new relative equilibria close to the nested, symmetrically arranged, regular heptagons have been found. The centered regular nonagon is also marginally stable. Again, a new family of close relative equilibria has been found. The closest relative equilibrium pairs occur, however, for symmetrically nested equilateral triangles.

1.
H.
Aref
,
P. K.
Newton
,
M. A.
Stremler
,
T.
Tokieda
, and
D. L.
Vainchtein
, “
Vortex crystals
,”
Adv. Appl. Mech.
39
,
1
(
2003
).
2.
P. K.
Newton
and
G.
Chamoun
, “
Vortex lattice theory: A particle interaction perspective
,”
SIAM Rev
.
51
,
501
(
2009
).
3.
L. J.
Campbell
and
R. M.
Ziff
, “
A catalog of two-dimensional vortex patterns
,”
Rev
.
Informal Report LA-7384-MS, Los Alamos National Laboratory
,
1978
, pp.
1
40
.
4.
L. J.
Campbell
and
R. M.
Ziff
, “
Vortex patterns and energies in a rotating superfluid
,”
Phys. Rev. B
20
,
1886
(
1979
).
5.
E. J.
Yarmchuk
,
M. J. V.
Gordon
, and
R. E.
Packard
, “
Observation of stationary vortex arrays in rotating superfluid Helium
,”
Phys. Rev. Lett.
43
,
214
(
1979
).
6.
K.
Glass
, “
Equilibrium configurations for a system of N particles in the plane
,”
Phys. Lett. A
235
,
591
(
1997
).
7.
H.
Aref
and
M.
van Buren
, “
Vortex triple rings
,”
Phys. Fluids
17
,
057104
, (
2005
).
8.
T. H.
Havelock
, “
Stability of motion of rectilinear vortices in ring formation
,”
Philos. Mag.
11
,
617
(
1931
).
9.
H.
Aref
, “
A note on the energy of relative equilibria of point vortices
,”
Phys. Fluids
19
,
103603
(
2007
).
10.
H.
Aref
and
D. L.
Vainchtein
, “
Asymmetric equilibrium patterns of point vortices
,”
Nature
392
,
769
(
1998
).
11.
H.
Aref
, “
Relative equilibria of point vortices and the fundamental theorem of algebra
,”
Proc. R. Soc. London, Ser. A
(in press).
12.
H.
Aref
, “
Stability of relative equilibria of three vortices
,”
Phys. Fluids
21
,
094101
(
2009
).
13.
K.
Sacha
and
B.
Eckhardt
, “
Pathways to non-sequential multiple ionization in strong laser fields
,”
J. Phys. B
36
,
3293
(
2003
).
14.
K.
A.
O’Neil
, “
Central configurations of identical masses lying along curves
,”
Phys. Rev. E
79
,
066601
(
2009
).
15.
A. B.
Bartman
, “
A new interpretation of the Adler-Moser KdV polynomials: Interaction of vortices
,” in
Nonlinear and Turbulent Processes in Physics
, edited by
R. Z.
Sagdeev
(
Harwood Academic
,
Newark, NJ
,
1984
), Vol.
3
, pp.
1175
1181
.
16.
G. E.
Roberts
, “
A continuum of relative equilibria in the five-body problem
,”
Physica D
127
,
141
(
1999
).
You do not currently have access to this content.