Jet injection into a supersonic cross-flow is a challenging fluid dynamics problem in the field of aerospace engineering which has applications as part of a rocket thrust vector control system for noise control in cavities and fuel injection in scramjet combustion chambers. Several experimental and theoretical/numerical works have been conducted to explore this flow; however, there is a dearth of literature detailing the instantaneous flow which is vital to improve the efficiency of the mixing of fluids. In this paper, a sonic jet in a Mach 1.6 free-stream is studied using a finite volume Godunov type implicit large eddy simulations technique, which employs fifth-order accurate MUSCL (Monotone Upstream-centered Schemes for Conservation Laws) scheme with modified variable extrapolation and a three-stage second-order strong-stability-preserving Runge–Kutta scheme for temporal advancement. A digital filter based turbulent inflow data generation method is implemented in order to capture the physics of the supersonic turbulent boundary layer. This paper details the averaged and instantaneous flow features including vortex structures downstream of the jet injection, along with the jet penetration, jet mixing, pressure distributions, turbulent kinetic energy, and Reynolds stresses in the downstream flow. It demonstrates that Kelvin–Helmholtz type instabilities in the upper jet shear layer are primarily responsible for mixing of the two fluids. The results are compared to experimental data and recently performed classical large eddy simulations (LES) with the same initial conditions in order to demonstrate the accuracy of the numerical methods and utility of the inflow generation method. Results here show equivalent accuracy for 145th of the computational resources used in the classical LES study.

1.
R.
Humble
,
G.
Henry
, and
W.
Larson
,
Space Propulsion Analysis and Design
, 2nd ed. (
McGraw-Hill
,
New York
,
1995
).
2.
H.
Ko
and
W.
Yoon
, “
Performance analysis of secondary gas injection into a conical rocket nozzle
,”
J. Propul. Power
18
,
585
(
2002
).
3.
R.
Sarno
and
M.
Franke
, “
Suppression of flow-induced pressure oscillations in cavities
,”
J. Aircr.
31
,
90
(
1994
).
4.
L. S.
Ukeiley
,
M. K.
Ponton
,
J. M.
Seiner
, and
B.
Jansen
, “
Suppression of pressure loads in cavity flows
,”
AIAA J.
42
,
70
(
2004
).
5.
A. D.
Vakili
and
C.
Gauthier
, “
Control of cavity flow by upstream mass-injection
,”
J. Aircr.
31
,
169
(
1994
).
6.
C. W.
Rowley
and
D. R.
Williams
, “
Dynamics and control of high Reynolds number flow over open cavities
,”
Annu. Rev. Fluid Mech.
38
,
251
(
2006
).
7.
L.
Cattafesta
,
D.
Williams
,
C.
Rowley
, and
F.
Alvi
, “
Review of active control of flow induced cavity resonance
,” AIAA Paper No. 2003-3567 (
2003
).
8.
J.
Schramm
,
S.
Karl
,
K.
Hannemann
, and
J.
Steelant
, “
Ground testing of the Hyshot-II scramjet configuration in HEG
,”
15th AIAA Space Planes and Hypersonic Systems Conference
, Dayton, AIAA Paper No. 2547,
2008
.
9.
D.
Davidenko
,
I.
Gokalp
,
E.
Dufour
, and
P.
Magre
, “
Numerical simulation of hydrogen supersonic combustion and validation of computational approach
,”
12th AIAA International Space Planes and Hypersonic Systems and Technologies
, Virginia, AIAA Paper No. 7033,
2003
.
10.
A.
Gardner
,
K.
Hannemann
,
J.
Steelant
, and
A.
Paull
, “
Ground testing of the Hyshot supersonic combustion flight experiment in HEG and comparison with flight data
,”
40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
, Florida, AIAA Paper No. 3345,
2004
.
11.
M.
Furudate
,
B.
Lee
, and
I.
Jeung
, “
Computation of Hyshot scramjet flows in the T4 experiments
,”
AIAA/CIRA 13th International Space Planes and Hypersonic Systems and Technologies
, AIAA Paper No. 3353,
2005
.
12.
E.
Love
and
C.
Grigsby
, “
Some studies of symmetric free jets exhausting from sonic and supersonic nozzles into still air and into supersonic streams
,” NACA Report No. RM-L54L31,
1955
.
13.
F.
Billig
,
R.
Orth
, and
M.
Lasky
, “
A unified analysis of gaseous jet penetration
,”
AIAA J.
9
,
1048
(
1971
).
14.
T.
Admason
and
J.
Nicholls
, “
On the structure of jets from highly underexpanded nozzles into still air
,”
J. Aerosp. Sci.
26
,
16
(
1959
).
15.
J.
Schetz
and
F.
Billig
, “
Penetration of gaseous jets injected into a supersonic stream
,”
J. Spacecr. Rockets
3
,
1658
(
1966
).
16.
L.
Cohen
,
L.
Coulter
, and
W.
Egan
, “
Penetration and mixing of multiple gas jets subjected to a crossflow
,”
AIAA J.
9
,
718
(
1971
).
17.
R.
Orth
and
J.
Funk
, “
An experimental and comparative study of jet penetration in supersonic flow
,”
J. Spacecr. Rockets
4
,
1236
(
1967
).
18.
A.
Ben-Yakar
,
M. G.
Mungal
, and
R. K.
Hanson
, “
Time evolution and mixing characteristics of hydrogen and ethylene transverse jets in supersonic crossflows
,”
Phys. Fluids
18
,
026101
(
2006
).
19.
M.
Gruber
,
A.
Nejad
,
T.
Chen
, and
J.
Dutton
, “
Mixing and penetration studies of sonic jets in a Mach 2 freestream
,”
J. Propul. Power
11
,
315
(
1995
).
20.
E.
Zukoski
and
F.
Spaid
, “
Secondary injection of gases into a supersonic flow
,”
AIAA J.
2
,
1689
(
1964
).
21.
W.
Calarese
,
L.
Sakell
, and
V.
Zakkay
, “
An experimental investigation of the interaction between a transverse sonic jet and a hypersonic stream
,”
AIAA J.
9
,
674
(
1971
).
22.
L.
Kaufman
 II
, “
Hypersonic flow past transverse jets
,”
J. Spacecr. Rockets
4
,
1230
(
1967
).
23.
M.
Vanierschot
,
T.
Persoons
, and
E.
Van den Bulck
, “
A new method for annular jet control based on cross-flow injection
,”
Phys. Fluids
21
,
025103
(
2009
).
24.
N.
Chauvet
,
S.
Deck
, and
L.
Jacquin
, “
Shock patterns in a slightly underexpanded sonic jet controlled by radial injections
,”
Phys. Fluids
19
,
048104
(
2007
).
25.
N.
Zong
,
H.
Meng
,
S.
Hsieh
, and
V.
Yang
, “
A numerical study of cryogenic fluid injection and mixing under supercritical conditions
,”
Phys. Fluids
16
,
4248
(
2004
).
26.
G.
Aswin
and
D.
Chakraborty
, “
Numerical simulation of transverse side jet interaction with supersonic free stream
,”
Aerosp. Sci. Technol.
14
,
295
(
2010
).
27.
J.
Santiago
and
J.
Dutton
, “
Velocity measurements of a jet injected into a supersonic flow
,”
J. Propul. Power
13
,
264
(
1997
).
28.
D.
Everett
,
M.
Woodmansee
,
J.
Dutton
, and
M.
Morris
, “
Wall pressure measurements for a sonic jet injected transversely into a supersonic crossflow
,”
J. Propul. Power
14
,
861
(
1998
).
29.
W. M.
VanLerberghe
,
J. G.
Santiago
,
J. C.
Dutton
, and
R. P.
Lucht
, “
Mixing of a sonic transverse jet injected into a supersonic flow
,”
AIAA J.
38
,
470
(
2000
).
30.
F.
Génin
and
S.
Menon
, “
Dynamics of sonic jet injection into supersonic crossflow
,”
J. Turbul.
11
,
4
(
2010
).
31.
S.
Kawai
and
S.
Lele
, “
Large-eddy simulation of jet mixing in a supersonic turbulent crossflow
,”
19th AIAA Computational Fluid Dynamics
, San Antonio, Texas, AIAA Paper No. 2009-3795, June
2009
.
32.
S.
Kawai
and
S.
Lele
, “
Large-eddy simulation of jet mixing in supersonic turbulent crossflows
,”
AIAA J.
48
,
2063
(
2010
).
33.
M.
Klein
,
A.
Sadiki
, and
J.
Janicka
, “
A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations
,”
J. Comput. Phys.
186
,
652
(
2003
).
34.
B.
Thornber
,
D.
Drikakis
,
R.
Williams
, and
D.
Youngs
, “
On entropy generation and dissipation of kinetic energy in high-resolution shock-capturing schemes
,”
J. Comput. Phys.
227
,
4853
(
2008
).
35.
R.
Spiteri
and
S.
Ruuth
, “
A new class of optimal high-order strong-stability-preserving time discretization method
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
40
,
469
(
2002
).
36.
Z.
Xie
and
I.
Castro
, “
Efficient generation of inflow conditions for large eddy simulation of street-scale flows
,”
Flow, Turbul. Combust.
81
,
449
(
2008
).
37.
E.
Touber
and
N.
Sandham
, “
Large-eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble
,”
Theor. Comput. Fluid Dyn.
23
,
79
(
2009
).
38.
D.
Drikakis
, “
Advances in turbulent flow computations using high-resolution methods
,”
Prog. Aerosp. Sci.
39
,
405
(
2003
).
39.
D.
Drikakis
and
S.
Tsangaris
, “
Real gas effects for compressible nozzle flow
,”
ASME Trans. J. Fluids Eng.
115
,
115
(
1993
).
40.
D.
Drikakis
and
S.
Tsangaris
, “
On the accuracy and efficiency of CFD methods in real gas hypersonics
,”
Int. J. Numer. Methods Fluids
16
,
759
(
1993
).
41.
J.
Zółtak
and
D.
Drikakis
, “
Hybrid upwind methods for the simulation of unsteady shock-wave diffraction over a cylinder
,”
Comput. Methods Appl. Mech. Eng.
162
,
165
(
1998
).
42.
A.
Bagabir
and
D.
Drikakis
, “
Numerical experiments using high-resolution schemes for unsteady, inviscid, compressible flows
,”
Comput. Methods Appl. Mech. Eng.
193
,
4675
(
2004
).
43.
E.
Toro
,
Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction
, 3rd ed. (
Springer-Verlag
,
Berlin
,
2009
).
44.
D.
Drikakis
and
W.
Rider
,
High-Resolution Methods for Incompressible and Low-Speed Flows
(
Springer-Verlag
,
Berlin
,
2005
).
45.
Z.
Rana
,
B.
Thornber
, and
D.
Drikakis
, “Large eddy simulation of a scramjet model (Hyshot-II) using high-resolution methods,”
45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
, Denver, Colorado,
2009
.
46.
B.
Thornber
and
D.
Drikakis
, “
Large eddy simulation of a deep cavity using high-resolution methods
,”
46th AIAA Aerospace Sciences Meeting and Exhibit
, AIAA Paper No. 0730,
2008
.
47.
B.
Thornber
,
D.
Drikakis
,
R.
Williams
,
A.
Mosedale
, and
D.
Youngs
, “
An improved reconstruction method for compressible flows with low Mach number features
,”
J. Comput. Phys.
227
,
4873
(
2008
).
48.
B.
Thornber
,
D.
Drikakis
,
D.
Youngs
, and
R.
Williams
, “
The influence of initial conditions on turbulent mixing due to Richtmyer–Meshkov instability
,”
J. Fluid Mech.
654
,
99
(
2010
).
49.
Z.
Rana
,
B.
Thornber
, and
D.
Drikakis
, “
CFD analysis of a scramjet model using high-resolution methods
,”
Proceedings of European Air and Space Conference (CEAS-2009)
, Manchester, UK,
2009
.
50.
Z.
Rana
and
D.
Drikakis
, “
Investigation of sonic jet mixing in a stream of supersonic cross-flow using large eddy simulations
,”
Proceedings of 27th Congress of the International Council of the Aeronautical Sciences (ICAS-2010)
, Nice, France,
2010
.
51.
S.
Godunov
, “
A finite-difference method for the computation of discontinuous solutions of the equations of fluid dynamics
,”
Mat. Sb.
47
,
271
(
1959
).
52.
B.
Van Leer
, “
Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection
,”
J. Comput. Phys.
23
,
276
(
1977
).
53.
C.
Kim
and
K. H.
Kim
, “
Accurate, efficient and monotonic numerical methods for multidimensional compressible flows. Part II. Multi-dimensional limiting process
,”
J. Comput. Phys.
208
,
570
(
2005
).
54.
H.
Guillard
and
A.
Murrone
, “
On the behaviour of upwind schemes in the low Mach number limit: II. Godunov type schemes
,”
Comput. Fluids
33
,
655
(
2004
).
55.
A.
Kolomogorov
, “
The local structure of turbulence in an incompressible fluid at very high Reynolds numbers
,”
Dokl. Akad. Nauk SSSR
30
,
299
(
1941
).
56.
B.
Thornber
,
M.
Starr
, and
D.
Drikakis
, “
Implicit large eddy simulation of ship air-wakes
,”
Aeronaut. J.
114
,
99
(
2010
).
57.
F.
Grinstein
,
L.
Margolin
, and
W.
Rider
,
Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics
(
Cambridge University Press
,
Cambridge
,
2007
).
58.
D.
Drikakis
,
M.
Hahn
,
A.
Mosedale
, and
B.
Thornber
, “
Large eddy simulation using high-resolution and high-order methods
,”
Philos. Trans. R. Soc. London, Ser. A
367
,
2985
(
2009
).
59.
R.
Courant
,
K.
Friedrichs
, and
H.
Lewy
, “
On the partial difference equations of mathematical physics
,”
IBM Journal
11
,
215
(
1967
).
60.
T.
Lund
,
X.
Wu
, and
K.
Squires
, “
Generation of turbulent inflow data for spatially-developing boundary layer simulations
,”
J. Comput. Phys.
140
,
233
(
1998
).
61.
S.
Pirozzoli
,
F.
Grasso
, and
T. B.
Gatski
, “
Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M=2.25
,”
Phys. Fluids
16
,
530
(
2004
).
62.
S.
Pirozzoli
,
M.
Bernardini
, and
F.
Grasso
, “
Characterization of coherent vortical structures in a supersonic turbulent boundary layer
,”
J. Fluid Mech.
613
,
205231
(
2008
).
63.
P. R.
Spalart
, “
Direct Simulation of a turbulent boundary layer up to Rθ=1410
,”
J. Fluid Mech.
187
,
61
(
1988
).
64.
G.
Abramovich
,
The Theory of Turbulent Jets
, English ed. (
Massachusetts Institute of Technology Press
,
Cambridge, MA
,
1963
), Chap. 12, Sec. 4.
65.
V.
Viti
,
R.
Neel
, and
J.
Schetz
, “
Detailed flow physics of the supersonic jet interaction flow field
,”
Phys. Fluids
21
,
046101
(
2009
).
66.
B.
Thornber
and
D.
Drikakis
, “
Implicit large-eddy simulation of a deep cavity using high-resolution methods
,”
AIAA J.
46
,
2634
(
2008
).
You do not currently have access to this content.