We examine the interaction of two-dimensional solitary pulses on falling liquid films. We make use of the second-order model derived by Ruyer-Quil and Manneville [Eur. Phys. J. B6, 277 (1998); Eur. Phys. J. B15, 357 (2000); Phys. Fluids14, 170 (2002)] by combining the long-wave approximation with a weighted residual technique. The model includes (second-order) viscous dispersion effects which originate from the streamwise momentum equation and tangential stress balance. These effects play a dispersive role that primarily influences the shape of the capillary ripples in front of the solitary pulses. We show that different physical parameters, such as surface tension and viscosity, play a crucial role in the interaction between solitary pulses giving rise eventually to the formation of bound states consisting of two or more pulses separated by well-defined distances and traveling at the same velocity. By developing a rigorous coherent-structure theory, we are able to theoretically predict the pulse-separation distances for which bound states are formed. Viscous dispersion affects the distances at which bound states are observed. We show that the theory is in very good agreement with computations of the second-order model. We also demonstrate that the presence of bound states allows the film free surface to reach a self-organized state that can be statistically described in terms of a gas of solitary waves separated by a typical mean distance and characterized by a typical density.

1.
P. L.
Kapitza
, “
Wave flow of thin layers of viscous fluid: I. Free flow
,”
Zh. Eksp. Teor. Fiz.
18
,
3
(
1948
). English translation in
Collected Papers of P. L. Kapitza
, edited by
D.
ter Haar
(
Macmillan
,
New York
,
1964
), Vol.
II
, pp.
662
679
.
2.
P. L.
Kapitza
, “
Wave flow of thin layers of a viscous fluid: II. Fluid flow in the presence of continuous gas flow and heat transfer
,”
Zh. Eksp. Teor. Fiz.
18
,
19
(
1948
). English translation in
Collected Papers of P. L. Kapitza
, edited by
D.
ter Haar
(
Macmillan
,
New York
,
1964
), Vol.
II
, pp.
680
689
.
3.
P. L.
Kapitza
and
S. P.
Kapitza
, “
Wave flow of thin layers of a viscous fluid: III. Experimental study of undulatory flow conditions
,”
Zh. Eksp. Teor. Fiz.
19
,
105
(
1949
). English translation in
Collected Papers of P. L. Kapitza
, edited by
D.
ter Haar
(
Macmillan
,
New York
,
1964
), Vol.
II
, pp.
690
709
.
4.
H. -C.
Chang
, “
Wave evolution on a falling film
,”
Annu. Rev. Fluid Mech.
26
,
103
(
1994
).
5.
H. -C.
Chang
and
E.
Demekhin
,
Complex Wave Dynamics on Thin Films
(
Springer
,
Amsterdam
,
2002
).
6.
Thin Films of Soft Matter
, edited by
S.
Kalliadasis
and
U.
Thiele
(
Springer-Wien
,
New York
,
2007
).
7.
E. A.
Demekhin
,
E. N.
Kalaidin
,
S.
Kalliadasis
, and
S. Yu.
Vlaskin
, “
Three-dimensional localized coherent structures of surface turbulence. I. Scenarios of two-dimensional–three-dimensional transition
,”
Phys. Fluids
19
,
114103
(
2007
).
8.
W. B.
Krantz
and
S. L.
Goren
, “
Stability of thin liquid films flowing down a plane
,”
Ind. Eng. Chem. Fundam.
10
,
91
(
1971
).
9.
J.
Liu
and
J. P.
Gollub
, “
Onset of spatially chaotic waves on flowing films
,”
Phys. Rev. Lett.
70
,
2289
(
1993
).
10.
J.
Liu
,
J. D.
Paul
, and
J. P.
Gollub
, “
Measurements of the primary instabilities of film flows
,”
J. Fluid Mech.
250
,
69
(
1993
).
11.
M.
Vlachogiannis
and
V.
Bontozoglou
, “
Observations of solitary wave dynamics of film flows
,”
J. Fluid Mech.
435
,
191
(
2001
).
12.
K.
Argyriadi
,
K.
Serifi
, and
V.
Bontozoglou
, “
Nonlinear dynamics of inclined films under low-frequency forcing
,”
Phys. Fluids
16
,
2457
(
2004
).
13.
A.
Pumir
,
P.
Manneville
, and
Y.
Pomeau
, “
On solitary waves running down an inclined plane
,”
J. Fluid Mech.
135
,
27
(
1983
).
14.
H. -C.
Chang
,
E. A.
Demekhin
, and
E. N.
Kalaidin
, “
Interaction dynamics of solitary waves on a falling film
,”
J. Fluid Mech.
294
,
123
(
1995
).
15.
H. -C.
Chang
,
E. A.
Demekhin
, and
S. S.
Saprikin
, “
Noise-driven wave transitions on a vertically falling film
,”
J. Fluid Mech.
462
,
255
(
2002
).
16.
C.
Duprat
,
F.
Giorgiutti-Dauphiné
,
D.
Tseluiko
,
S.
Saprykin
, and
S.
Kalliadasis
, “
Liquid film coating a fiber as a model system for the formation of bound states in active dispersive–dissipative nonlinear media
,”
Phys. Rev. Lett.
103
,
234501
(
2009
).
17.
C.
Ruyer-Quil
and
P.
Manneville
, “
Modeling film flows down inclined planes
,”
Eur. Phys. J. B
6
,
277
(
1998
).
18.
C.
Ruyer-Quil
and
P.
Manneville
, “
Improved modeling of flows down inclined planes
,”
Eur. Phys. J. B
15
,
357
(
2000
).
19.
C.
Ruyer-Quil
and
P.
Manneville
, “
Further accuracy and convergence results on the modeling of flows down inclined planes by weighted-residual approximations
,”
Phys. Fluids
14
,
170
(
2002
).
20.
D.
Tseluiko
,
S.
Saprykin
, and
S.
Kalliadasis
, “
Interaction of solitary pulses in active dispersive-dissipative media
,”
Proc. Est. Acad. Sci.
59
,
139
(
2010
).
21.
D.
Tseluiko
,
S.
Saprykin
,
C.
Duprat
,
F.
Giorgiutti-Dauphiné
, and
S.
Kalliadasis
, “
Pulse dynamics in low-Reynolds-number interfacial hydrodynamics: Experiments and theory
,”
Physica D
239
,
2000
(
2010
).
22.
N. J.
Balmforth
, “
Solitary waves and homoclinic orbits
,”
Annu. Rev. Fluid Mech.
27
,
335
(
1995
).
23.
S. -I.
Ei
, “
The motion of weakly interacting pulses in reaction-diffusion systems
,”
J. Dyn. Differ. Equ.
14
,
85
(
2002
).
24.
S.
Zelik
and
A.
Mielke
, “
Multi-pulse evolution and space-time chaos in dissipative systems
,”
Mem. Am. Math. Soc.
198
,
1
(
2009
).
25.
C.
Elphick
,
G. R.
Ierley
,
O.
Regev
, and
E. A.
Spiegel
, “
Interacting localized structures with Galilean invariance
,”
Phys. Rev. A
44
,
1110
(
1991
).
26.
S. -I.
Ei
and
T.
Ohta
, “
Equation of motion for interacting pulses
,”
Phys. Rev. E
50
,
4672
(
1994
).
27.
A.
Oron
,
S. H.
Davis
, and
S. G.
Bankoff
, “
Long-scale evolution of thin liquid films
,”
Rev. Mod. Phys.
69
,
931
(
1997
).
28.
D. J.
Benney
, “
Long waves on liquid films
,”
J. Math. Phys.
45
,
150
(
1966
).
29.
V. Ya.
Shkadov
, “
Solitary waves in a layer of viscous liquid
,”
Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza
1
,
63
(
1977
).
30.
V. Ya.
Shkadov
, “
Wave modes in the flow of thin layer of a viscous liquid under the action of gravity
,”
Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza
1
,
43
(
1967
).
31.
R. L.
Pego
and
M. I.
Weinstein
, “
Asymptotic stability of solitary waves
,”
Commun. Math. Phys.
164
,
305
(
1994
).
32.
B.
Sandstede
and
A.
Scheel
, “
Absolute and convective instabilities of waves on unbounded and large bounded domains
,”
Physica D
145
,
233
(
2000
).
33.
N. A.
Malamataris
,
M.
Vlachogiannis
, and
V.
Bontozoglou
, “
Solitary waves on inclined films: Flow structure and binary interactions
,”
Phys. Fluids
14
,
1082
(
2002
).
34.
N.
Savva
,
S.
Kalliadasis
, and
G. A.
Pavliotis
, “
Two-dimensional droplet spreading over random topographical substrates
,”
Phys. Rev. Lett.
104
,
084501
(
2010
).
35.
S.
Kalliadasis
and
H. -C.
Chang
, “
Drop formation during coating of vertical fibres
,”
J. Fluid Mech.
261
,
135
(
1994
).
36.
C.
Duprat
,
C.
Ruyer-Quil
,
S.
Kalliadasis
, and
F.
Giorgiutti-Dauphiné
, “
Absolute and convective instabilities of a film flowing down a vertical fiber
,”
Phys. Rev. Lett.
98
,
244502
(
2007
).
37.
C.
Ruyer-Quil
,
P. M. J.
Treveleyan
,
F.
Giorgiutti-Dauphiné
,
C.
Duprat
, and
S.
Kalliadasis
, “
Modelling film flows down a fibre
,”
J. Fluid Mech.
603
,
431
(
2008
).
38.
Z.
Tasev
,
L.
Kocarev
,
L.
Junge
, and
U.
Parlitz
, “
Synchronization of Kuramoto-Sivashinsky equations using spatially local coupling
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
10
,
869
(
2000
).
39.
E. A.
Demekhin
,
E. N.
Kalaidin
,
S.
Kalliadasis
, and
S. Yu.
Vlaskin
, “
Three-dimensional localized coherent structures of surface turbulence. II. Λ solitons
,”
Phys. Fluids
19
,
114104
(
2007
).
You do not currently have access to this content.