We study the dynamics of rod shaped particles in two-dimensional electromagnetically driven fluid flows. Two separate types of flows that exhibit chaotic mixing are compared: one with time-periodic flow and the other with constant forcing but nonperiodic flow. Video particle tracking is used to make accurate simultaneous measurements of the motion and orientation of rods along with the carrier fluid velocity field. These measurements allow a detailed comparison of the motion and orientation of rods with properties of the carrier flow. Measured rod rotation rates are in agreement with predictions for ellipsoidal particles based on the measured velocity gradients at the center of the rods. There is little dependence on length for the rods we studied (up to 53% of the length scale of the forcing). Rods are found to align weakly with the extensional direction of the strain-rate tensor. However, the alignment is much stronger with the direction of Lagrangian stretching defined by the eigenvectors of the Cauchy–Green deformation tensor. A simple model of the stretching process predicts the degree of alignment of rods with the stretching direction.

1.
F.
Toschi
and
E.
Bodenschatz
, “
Lagrangian properties of particles in turbulence
,”
Annu. Rev. Fluid Mech.
41
,
375
(
2009
).
2.
N. M.
Qureshi
,
M.
Bourgoin
,
C.
Baudet
,
A.
Cartellier
, and
Y.
Gagne
, “
Turbulent transport of material particles: An experimental study of finite size effects
,”
Phys. Rev. Lett.
99
,
184502
(
2007
).
3.
N. T.
Ouellette
,
P. J. J.
O’Malley
, and
J. P.
Gollub
, “
Transport of finite-sized particles in chaotic flow
,”
Phys. Rev. Lett.
101
,
174504
(
2008
).
4.
R. D.
Brown
,
Z.
Warhaft
, and
G. A.
Voth
, “
Acceleration statistics of neutrally buoyant spherical particles in intense turbulence
,”
Phys. Rev. Lett.
103
,
194501
(
2009
).
5.
J. A.
Olson
and
R. J.
Kerekes
, “
The motion of fibres in turbulent flow
,”
J. Fluid Mech.
377
,
47
(
1998
).
6.
C. P. R.
Saunders
, “
Thunderstorm electrification laboratory experiments and charging mechanisms
,”
J. Geophys. Res.
99
,
10773
, doi:10.1029/93JD01624 (
1994
).
7.
C. P. R.
Saunders
,
S. L.
Peck
,
G. G.
Aguirre Varela
,
E. E.
Avila
, and
N. E.
Castellano
, “
A laboratory study of the influence of water vapour and mixing on the charge transfer process during collisions between ice crystals and graupel
,”
Atmos. Res.
58
,
187
(
2001
).
8.
S. C.
Sherwood
,
V. T. J.
Phillips
, and
J. S.
Wettlaufer
, “
Small ice crystals and the climatology of lightning
,”
Geophys. Res. Lett.
33
,
L05804
, doi:10.1029/2005GL025242 (
2006
).
9.
M. B.
Pinsky
and
A. P.
Khain
, “
Some effects of cloud turbulence on water-ice and ice-ice collisions
,”
Atmos. Res.
47–48
,
69
(
1998
).
10.
G. B.
Jeffery
, “
The motion of ellipsoidal particles immersed in a viscous fluid
,”
Proc. R. Soc. London, Ser. A
102
,
161
(
1922
).
11.
G. I.
Taylor
, “
The motion of ellipsoidal particles in a viscous fluid
,”
Proc. R. Soc. London, Ser. A
103
,
58
(
1923
).
12.
H.
Brenner
, “
The Stokes resistance of an arbitrary particle
,”
Chem. Eng. Sci.
18
,
1
(
1963
).
13.
H.
Brenner
, “
The Stokes resistance of an arbitrary particle—II. An extension
,”
Chem. Eng. Sci.
19
,
599
(
1964
).
14.
H.
Brenner
, “
The Stokes resistance of an arbitrary particle—III. Shear fields
,”
Chem. Eng. Sci.
19
,
631
(
1964
).
15.
H.
Brenner
, “
The Stokes resistance of an arbitrary particle—IV. Arbitrary fields of flow
,”
Chem. Eng. Sci.
19
,
703
(
1964
).
16.
E.
Gavze
and
M.
Shapiro
, “
Motion of inertial spheroidal particles in a shear flow near a solid wall with special application to aerosol transport in microgravity
,”
J. Fluid Mech.
371
,
59
(
1998
).
17.
G.
Subramanian
and
D. L.
Koch
, “
Inertial effects on fibre motion in simple shear flow
,”
J. Fluid Mech.
535
,
383
(
2005
).
18.
A. J.
Szeri
,
S.
Wiggins
, and
L. G.
Leal
, “
On the dynamics of suspended microstructures in unsteady, spatially inhomogeneous, 2-dimensional fluid flows
,”
J. Fluid Mech.
228
,
207
(
1991
).
19.
A. J.
Szeri
,
W. J.
Milliken
, and
L. G.
Leal
, “
Rigid particles suspended in time-dependent flows: irregular versus regular motion, disorder versus order
,”
J. Fluid Mech.
237
,
33
(
1992
).
20.
A. J.
Szeri
and
L. G.
Leal
, “
Microstructure suspended in 3-dimensional flows
,”
J. Fluid Mech.
250
,
143
(
1993
).
21.
A. J.
Szeri
, “
Pattern-formation in recirculating-flows of suspensions of orientable particles
,”
Philos. Trans. R. Soc. London, Ser. A
345
,
477
(
1993
).
22.
S. S.
Girimaji
and
S. B.
Pope
, “
Material element deformation in isotropic turbulence
,”
J. Fluid Mech.
220
,
427
(
1990
).
23.
E.
Dresselhaus
and
M.
Tabor
, “
The kinematics of stretching and alignment of material elements in general flow fields
,”
J. Fluid Mech.
236
,
415
(
1992
).
24.
P. H.
Mortensen
,
H. I.
Andersson
,
J. J. J.
Gillissen
, and
B. J.
Boersma
, “
On the orientation of ellipsoidal particles in a turbulent shear flow
,”
Int. J. Multiphase Flow
34
,
678
(
2008
).
25.
P. H.
Mortensen
,
H. I.
Andersson
,
J. J. J.
Gillissen
, and
B. J.
Boersma
, “
Dynamics of prolate ellipsoidal particles in a turbulent channel flow
,”
Phys. Fluids
20
,
093302
(
2008
).
26.
M.
Shin
and
D. L.
Koch
, “
Rotational and translational dispersion of fibres in isotropic turbulent flows
,”
J. Fluid Mech.
540
,
143
(
2005
).
27.
M.
Wilkinson
,
V.
Bezuglyy
, and
B.
Mehlig
, “
Fingerprints of random flows?
Phys. Fluids
21
,
043304
(
2009
).
28.
C. M.
Zettner
and
M.
Yoda
, “
Moderate-aspect-ratio elliptical cylinders in simple shear with inertia
,”
J. Fluid Mech.
442
,
241
(
2001
).
29.
K. B.
Moses
,
S. G.
Advani
, and
A.
Reinhardt
, “
Investigation of fiber motion near solid boundaries in simple shear flow
,”
Rheol. Acta
40
,
296
(
2001
).
30.
R.
Holm
and
D.
Soderberg
, “
Shear influence on fibre orientation–Dilute suspension in the near wall region
,”
Rheol. Acta
46
,
721
(
2007
);
Third Annual European Rheology Confererence
, Hersonissos, Greece, 27–29 April
2006
.
31.
M.
Parsheh
,
M. L.
Brown
, and
C. K.
Aidun
, “
Variation of fiber orientation in turbulent flow inside a planar contraction with different shapes
,”
Int. J. Multiphase Flow
32
,
1354
(
2006
).
32.
O.
Bernstein
and
M.
Shapiro
, “
Direct determination of the orientation distribution function of cylindrical particles immersed in laminar and turbulent shear flows
,”
J. Aerosol Sci.
25
,
113
(
1994
).
33.
R. K.
Newsom
and
C. W.
Bruce
, “
Orientational properties of fibrous aerosols in atmospheric turbulence
,”
J. Aerosol Sci.
29
,
773
(
1998
).
34.
L. E.
Malvern
,
Introduction to the Mechanics of a Continuous Medium
(
Prentice-Hall
,
London
,
1969
).
35.
G.
Haller
and
G.
Yuan
, “
Lagrangian coherent structures and mixing in two-dimensional turbulence
,”
Physica D
147
,
352
(
2000
).
36.
G. A.
Voth
,
G.
Haller
, and
J. P.
Gollub
, “
Experimental measurements of stretching fields in fluid mixing
,”
Phys. Rev. Lett.
88
,
254501
(
2002
).
37.
M.
Mathur
,
G.
Haller
,
T.
Peacock
,
J. E.
Ruppert-Felsot
, and
H. L.
Swinney
, “
Uncovering the Lagrangian skeleton of turbulence
,”
Phys. Rev. Lett.
98
,
144502
(
2007
).
38.
M. J.
Twardos
,
P. E.
Arratia
,
M. K.
Rivera
,
G. A.
Voth
,
J. P.
Gollub
, and
R. E.
Ecke
, “
Stretching fields and mixing near the transition to nonperiodic two-dimensional flow
,”
Phys. Rev. E
77
,
056315
(
2008
).
39.
Independent but complementary experiments for periodic and nonperiodic flows were performed using similar apparatuses by groups at Wesleyan and Haverford, respectively, which accounts for the slight differences in materials and procedures for the two types of flows.
40.
D.
Vella
and
L.
Mahadevan
, “
The ‘Cheerios effect’
,”
Am. J. Phys.
73
,
817
(
2005
).
41.
N. T.
Ouellette
,
H.
Xu
, and
E.
Bodenschatz
, “
A quantitative study of three-dimensional Lagrangian particle tracking algorithms
,”
Exp. Fluids
40
,
301
(
2006
).
42.
A. J.
Szeri
and
L. G.
Leal
, “
A new computational method for the solution of flow problems of microstructured fluids. Part 1. Theory
,”
J. Fluid Mech.
242
,
549
(
1992
).
You do not currently have access to this content.