A theoretical analysis was performed for the head-on collision of two identical droplets in a gaseous environment, with the attendant bouncing and coalescence outcomes, for situations in which the extent of droplet deformation upon collision is comparable to the original droplet radius, corresponding to O(1)O(10) of the droplet Weber number. The model embodies the essential physics that describes the substantial amount of droplet deformation, the viscous loss through droplet internal motion induced by the deformation, the dynamics and rarefied nature of the gas film between the interfaces of the colliding droplets, and the potential destruction and thereby merging of these interfaces due to the van der Waals attraction force. The theoretical model was applied to investigate collisions involving hydrocarbon and water droplets at sub- and superatmospheric pressures. The results agree well with previous experimental observations in that as the Weber number increases in the range of O(1)O(10), collision of hydrocarbon droplets at one atmospheric pressure results in the nonmonotonic coalescence-bouncing-coalescence transition, that while bouncing is absent for water droplets at atmospheric pressure, it occurs at higher pressures, and that while bouncing is observed for hydrocarbon droplets at atmospheric pressure, it is absent at lower pressures.

1.
C. K.
Law
,
Combustion Physics
(
Cambridge University Press
,
New York
,
2006
).
2.
J. R.
Adam
,
N. R.
Lindblad
, and
C. D.
Hendricks
, “
The collision, coalescence, and disruption of water droplets
,”
J. Appl. Phys.
39
,
5173
(
1968
).
3.
P. R.
Brazier
,
S. G.
Jennings
, and
J.
Latham
, “
The interaction of falling water drops: Coalescence
,”
Proc. R. Soc. London, Ser. A
326
,
393
(
1972
).
4.
N.
Ashgriz
and
J. Y.
Poo
, “
Coalescence and separation in binary collision of liquid drops
,”
J. Fluid Mech.
221
,
183
(
1990
).
5.
Y. J.
Jiang
,
A.
Umemura
, and
C. K.
Law
, “
An experimental investigation on the collision behaviour of hydrocarbon droplets
,”
J. Fluid Mech.
234
,
171
(
1992
).
6.
J.
Qian
and
C. K.
Law
, “
Regimes of coalescence and separation in droplet collision
,”
J. Fluid Mech.
331
,
59
(
1997
).
7.
I. V.
Roisman
, “
Dynamics of inertia dominated binary drop collision
,”
Phys. Fluids
16
,
3438
(
2004
).
8.
A.
Gopinath
and
D. L.
Koch
, “
Collision and rebound of small droplets in an incompressible continuum gas
,”
J. Fluid Mech.
454
,
145
(
2002
).
9.
G. A.
Bach
,
D. L.
Koch
, and
A.
Gopinath
, “
Coalescence and bouncing of small aerosol droplets
,”
J. Fluid Mech.
518
,
157
(
1999
).
10.
G. D.
Mackay
and
S. G.
Mason
, “
The gravity approach and coalescence of fluid drops at liquid interfaces
,”
Can. J. Chem. Eng.
41
,
203
(
1963
).
11.
E. D.
Manev
and
A. V.
Nguyen
, “
Critical thickness of microscopic thin liquid films
,”
Adv. Colloid Interface Sci.
114–115
,
133
(
2005
).
12.
J.
Israelachvili
,
Intermolecular and Surface Forces
, 2nd ed. (
Academic
,
San Diego
,
1992
).
13.
S. G.
Bradley
and
C. D.
Stow
, “
Collisions between liquid drops
,”
Philos. Trans. R. Soc. London, Ser. A
287
,
635
(
1978
).
14.
G. B.
Footte
, “
The water drop rebound problem: Dynamics of collision
,”
J. Atmos. Sci.
32
,
390
(
1975
).
15.
M. R.
Nobari
,
Y. J.
Jan
, and
G.
Tryggvason
, “
Head-on collision of drops-a numerical investigation
,”
Phys. Fluids
8
,
29
(
1996
).
16.
M.
Dai
and
D. P.
Schmidt
, “
Numerical simulation of head-on droplet collision: Effect of viscosity on maximum deformation
,”
Phys. Fluids
17
,
041701
(
2005
).
17.
K. L.
Pan
, “
Dynamics of droplet collision and flame-front motion
,” Ph.D. thesis,
Princeton University
,
2004
.
18.
K. L.
Pan
,
C. K.
Law
, and
B.
Zhou
, “
Experimental and mechanistic description of merging and bouncing in head-on binary droplet collision
,”
J. Appl. Phys.
103
,
064901
(
2008
).
19.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
, 2nd ed. (
Pergamon
,
Oxford
,
1980
).
20.
F. M.
White
,
Viscous Fluid Flow
, 2nd ed. (
McGraw-Hill
,
New York
,
1991
).
21.
P.
Zhang
, “
Problems in rarefied flows and chemical kinetics
,” Ph.D. thesis,
Princeton University
,
2010
.
22.
V.
Mehdi-Nejad
,
J.
Mostaghimi
, and
S.
Chandra
, “
Air bubble entrapment under an impacting droplet
,”
Phys. Fluids
15
,
173
(
2003
).
23.
C. H.
Wang
,
W. G.
Hung
,
S. Y.
Fu
,
W. C.
Huang
, and
C. K.
Law
, “
On the burning and microexplosion of collision-generated bi-component droplets: Miscible fuels
,”
Combust. Flame
134
,
289
(
2003
).
24.
C. H.
Wang
,
W. G.
Hung
,
L. J.
Kung
, and
C. K.
Law
, “
Combustion and microexplosion of collision-merged methanal/alkane droplets
,”
Proc. Combust. Inst.
30
,
1965
(
2005
).
25.
X.
Jiang
and
A. J.
James
, “
Numerical simulation of the head-on collision of two equal-sized drops with van der Waals forces
,”
J. Eng. Math.
59
,
99
(
2007
).
26.
D.
Meksyn
,
New Methods in Laminar Boundary-Layer Theory
(
Pergamon
,
Oxford
,
1961
).
27.
H.
Schlichting
,
Boundary Layer Theory
, 7th ed. (
McGraw-Hill
,
New York
,
1968
).
28.
R. H.
Davis
,
J. A.
Schonberg
, and
J. M.
Rallison
, “
The lubrication force between two viscous drops
,”
Phys. Fluids A
1
,
77
(
1989
).
29.
H. K.
Kytömaa
and
P. J.
Schmid
, “
On the collision of rigid spheres in a weakly compressible fluid
,”
Phys. Fluids A
4
,
2683
(
1992
).
30.
R. R.
Sundararajakumar
and
D. L.
Koch
, “
Non-continuum lubrication flows between particles colliding in a gas
,”
J. Fluid Mech.
313
,
283
(
1996
).
31.
C.
Cercignani
and
A.
Daneri
, “
Flow of a rarefied gas between two parallel plates
,”
J. Appl. Phys.
34
,
3509
(
1963
).
32.
M. N.
Kogan
,
Rarefied Gas Dynamics
(
Pergamon
,
New York
,
1969
).
33.
P. L.
Bhatnagar
,
E. P.
Gross
, and
E. P.
Krook
, “
A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems
,”
Phys. Rev.
94
,
511
(
1954
).
34.
O.
Laporte
, “
Absorption coefficients for thermal neutrons
,”
Phys. Rev.
52
,
72
(
1937
).
35.
M.
Abramowitz
, “
Evaluation of the integral 0eu2x/udu
,”
J. Math. Phys.
32
,
188
(
1953
).
36.
A.
Gopinath
,
S. B.
Chen
, and
D. L.
Koch
, “
Collision and rebound of small droplets in an incompressible continuum gas
,”
J. Fluid Mech.
344
,
245
(
1997
).
37.
H. C.
Hamaker
, “
The London-van der Waals attraction between spherical particles
,”
J Phys. IV
10
,
1058
(
1937
).
38.
F.
Baldessari
,
G. M.
Homsy
, and
L. G.
Leal
, “
Linear stability of a draining film squeezed between two approaching droplets
,”
J. Colloid Interface Sci.
307
,
188
(
2007
).
39.
A.
Vrij
and
J. T.
Overbeek
, “
Rupture of thin liquid films due to spontaneous fluctuations in thickness
,”
J. Am. Chem. Soc.
90
,
3074
(
1968
).
40.
E.
Klaseboer
,
J. P.
Chevaillier
,
C.
Gourdon
, and
O.
Masbernat
, “
Film drainage between colliding drops at constant approach velocity: Experiments and modeling
,”
J. Colloid Interface Sci.
229
,
274
(
2000
).
41.
A. K.
Chesters
, “
The modelling of coalescence processes in fluid-liquid dispersions: A review of current understanding
,”
Chem. Eng. Res. Des.
69
,
259
(
1991
).
42.
K.
Radhakrishnana
and
A. C.
Hindmarsh
, “
Description and use of LSODE, the Livermore solver for ordinary differential equations
,”
LLNL
Report No. UCRL-ID-113855,
1993
.
43.
H.
Lamb
,
Hydrodynamics
, 6th ed. (
Cambridge University Press
,
New York
,
1932
).
44.
L. G.
Leal
, “
Flow induced coalescence of drops in a viscous fluid
,”
Phys. Fluids
16
,
1833
(
2004
).
You do not currently have access to this content.