The dynamics of a turbulent premixed confined swirling flame is investigated using large eddy simulation. The flame response is determined by introducing an external acoustic forcing at two modulation frequencies corresponding to characteristic values of the flame transfer function obtained experimentally. These values were found to give different responses in terms of gain in a previous series of experiments. The underlying physical mechanisms identified experimentally are investigated numerically. Simulations confirm that swirl number fluctuations and vortex roll-up govern the flame response. It is also confirmed that the first mechanism is associated with a mode conversion process taking place when acoustic waves impinge on the swirler unit. The axial acoustic velocity disturbance on the upstream side of the swirler generates an axial acoustic wave and an azimuthal convective disturbance in the downstream flow. These combined disturbances are retrieved in the simulation and their effect on the swirl number is extracted. Calculations also indicate that vortex shedding synchronized by the acoustic forcing takes place at the injector lip outlet. Vortices originating from this region are convected in the jet shear layer, impinge on the flame, and roll-up the flame tip. This process interferes with oscillations in the flame angle induced by swirl number fluctuations. The phasing of the flame angle with respect to the instant of vortex shedding from the injector lips determines the lifetime of the vortex before interaction with the flame and controls the strength of this interaction. When this lifetime is reduced, the vortex cannot fully develop and the flame response remains weak. For larger lifetimes, the vortex can fully develop and produce larger heat release rate perturbations. This process depends on the forcing frequency, which determines the phasing between swirl number fluctuations and vortices generation.

1.
S. L.
Plee
and
A. M.
Mellor
, “
Review of flashback in prevaporizing/premixing combustors
,”
Combust. Flame
32
,
193
(
1978
).
2.
S.
Candel
, “
Combustion dynamics and control: Progress and challenges
,”
Proc. Combust. Inst.
29
,
1
(
2002
).
3.
T. C.
Lieuwen
and
V.
Yang
,
Combustion Instabilities in Gas Turbines, Operational Experience, Fundamental Mechanisms, and Modeling
,
Progress in Astronautics and Aernautics
, Vol. 210 (
AIAA
,
VA
,
2005
), Vol.
210
.
4.
S.
Ducruix
,
T.
Schuller
,
D.
Durox
, and
S.
Candel
, “
Combustion dynamics and instabilities: Elementary coupling and driving mechanisms
,”
J. Propul. Power
19
,
722
(
2003
).
5.
S. K.
Thumuluru
,
H. H.
Ma
, and
T.
Lieuwen
, “
Measurements of the flame response to harmonic excitation in a swirl combustor
,” AIAA Paper No. 2007-0845,
2007
.
6.
P.
Palies
,
D.
Durox
,
T.
Schuller
, and
S.
Candel
, “
The combined dynamics of swirler and turbulent premixed swirling flames
,”
Combust. Flame
157
,
1698
(
2010
).
7.
D. L.
Straub
and
G. A.
Richards
, “
Effect of axial swirl vane location on combustion dynamics
,” ASME Paper No. 99-GT-109,
1999
.
8.
C.
Hirsch
,
D.
Fanaca
,
R.
Alemela
,
W.
Polifke
, and
T.
Sattelmayer
, “
Influence of the swirler design on the flame transfer function of premixed flames
,” ASME Paper No. GT2005-68195,
2005
.
9.
T.
Komarek
and
W.
Polifke
, “
Impact of swirl fluctuations on the flame response of a perfectly premixed swirl burner
,”
ASME J. Eng. Gas Turbines Power
132
,
061503
(
2010
).
10.
P.
Palies
,
D.
Durox
,
T.
Schuller
, and
S.
Candel
, “
Acoustic-convective mode conversion in an airfoil cascade
,”
J. Fluid Mech.
(in press), doi:10.1017/S0022112010006142.
11.
C.
Külsheimer
and
H.
Büchner
, “
Combustion dynamics of turbulent swirling flames
,”
Combust. Flame
131
,
70
(
2002
).
12.
Y.
Huang
and
V.
Yang
, “
Dynamics and stability of lean-premixed swirl-stabilized combustion
,”
Prog. Energy Combust. Sci.
35
,
293
(
2009
).
13.
Y.
Huang
and
V.
Yang
, “
Effect of swirl on combustion dynamics in a lean-premixed swirl-stabilized combustor
,”
Proc. Combust. Inst.
30
,
1775
(
2005
).
14.
S.
Wang
,
S. Y.
Hsieh
, and
V.
Yang
, “
Unsteady flow evolution in swirl injector with radial entry. I. Stationary conditions
,”
Phys. Fluids
17
,
045106
(
2005
).
15.
S.
Wang
,
S. Y.
Hsieh
, and
V.
Yang
, “
Unsteady flow evolution in a swirl injector with radial entry. II. External excitations
,”
Phys. Fluids
17
,
045107
(
2005
).
16.
S.
Shanbhogue
,
D. -H.
Shin
,
S.
Hemchandra
,
D.
Plaks
, and
T.
Lieuwen
, “
Flame sheet dynamics of bluff body stabilized flames during longitudinal acoustic forcing
,”
Proc. Combust. Inst.
32
,
1787
(
2009
).
17.
D. H.
Shin
,
S. J.
Shanbhogue
, and
T.
Lieuwen
, “
Premixed flame kinematics in an axially decaying harmonically oscillating vorticity field
,” AIAA Paper No. 2008-5042,
2008
.
18.
S. H.
Preetham
,
H.
Santosh
, and
T.
Lieuwen
, “
Dynamics of laminar premixed flames forced by harmonic velocity disturbances
,”
J. Propul. Power
24
,
1390
(
2008
).
19.
K. T.
Kim
,
H. J.
Lee
,
J. G.
Lee
,
B. D.
Quay
, and
D.
Santavicca
, “
Flame transfer function measurements and instability frequency using a thermoacoustic model
,” ASME Paper No. GT2009-60026,
2009
.
20.
D.
Kim
,
J. G.
Lee
,
B. D.
Quay
,
D.
Santavicca
,
K.
Kim
, and
S.
Srinivasan
, “
Effect of flame structure on the flame transfer function in a premixed gas turbine combustor
,”
ASME J. Eng. Gas Turbines Power
132
,
021502
, (
2010
).
21.
K. T.
Kim
,
J. G.
Lee
,
H. J.
Lee
,
B. D.
Quay
, and
D.
Santavicca
, “
Characterization of forced flame response of swirl-stabilized turbulent lean-premixed flames in a gas turbine combustor
,”
ASME J. Eng. Gas Turbines Power
132
,
041502
(
2010
).
22.
P.
Palies
,
D.
Durox
,
T.
Schuller
,
P.
Morenton
, and
S.
Candel
, “
Dynamics of premixed confined swirling flames
,”
C. R. Mec.
337
,
395
(
2009
).
23.
T.
Schönfeld
and
M.
Rudgyard
, “
Steady and unsteady flows simulations using the hybrid flow solver AVBP
,”
AIAA J.
37
,
1378
(
1999
).
24.
G.
Staffelbach
,
L. Y. M.
Gicquel
,
G.
Boudier
, and
T.
Poinsot
, “
Large eddy simulation of self excited azimuthal modes in annular combustors
,”
Proc. Combust. Inst.
32
,
2909
(
2009
).
25.
O.
Colin
,
F.
Ducros
,
D.
Veynante
, and
T.
Poinsot
, “
A thickening flame model for large eddy simulation of turbulent premixed combustion
,”
Phys. Fluids
12
,
1843
(
2000
).
26.
F.
Ducros
,
F.
Nicoud
, and
T.
Poinsot
, “
Large eddy simulations of compressible flows on hybrid meshes
,”
Turbulent Shear Flows 11
, (
Grenoble
,
France
,
1997
), pp.
28
1
28
6
.
27.
C.
Martin
,
L.
Benoit
,
Y.
Sommerer
,
F.
Nicoud
, and
T.
Poinsot
, “
LES and acoustic analysis of combustion instability in a staged turbulent swirled combustor
,”
AIAA J.
44
,
741
(
2006
).
28.
O.
Colin
and
M.
Rudgyard
, “
Development of high-order Taylor-Galerkin schemes for LES
,”
J. Comput. Phys.
162
,
338
(
2000
).
29.
T.
Poinsot
and
S.
Lele
, “
Boundary conditions for direct simulations of compressible viscous flows
,”
J. Comput. Phys.
101
,
104
(
1992
).
30.
A.
Kaufmann
,
F.
Nicoud
, and
T.
Poinsot
, “
Flow forcing techniques for numerical simulations of combustion instabilities
,”
Combust. Flame
131
,
371
(
2002
).
31.
L. T.
Wo Chong
,
T.
Komarek
,
R.
Kaess
,
S.
Foller
, and
W.
Polifke
, “
Identification of flame transfer functions from LES of a premixed swirl burner
,” ASME Paper No GT2010-22769,
2010
.
32.
G.
Herding
,
R.
Snyder
,
C.
Rolon
, and
S.
Candel
, “
Investigation of cryogenic propellant flames using computerized tomography of OH emission images
,”
J. Propul. Power
14
,
146
(
1998
).
33.
B.
Higgins
,
M. Q.
McQuay
,
F.
Lacas
,
J. C.
Rolon
,
N.
Darabiha
, and
S.
Candel
, “
Systematic measurements of OH chemiluminescence for fuel-lean, high pressure, premixed, laminar flames
,”
Fuel
80
,
67
(
2001
).
34.
M.
Lauer
and
T.
Sattelmayer
, “
On the adequacy of chemiluminescene as a measure for heat release in turbulent flames with mixture gradients
,”
ASME J. Eng. Gas Turbines Power
132
,
061502
,
2010
.
35.
N.
Cumpsty
and
F.
Marble
, “
The interaction of entropy fluctuations with turbine blade rows; a mechanism of turbojet engine noise
,”
Proc. R. Soc. London, Ser. A
357
,
323
(
1977
).
36.
M.
Vanierschot
and
E.
Van den Bulck
, “
Influence of swirl on the initial merging zone of a turbulent annular jet
,”
Phys. Fluids
20
,
105104
(
2008
).
37.
J. C. R.
Hunt
,
A. A.
Wray
, and
P.
Moin
, Technical Report No. CTR-S88, Center for Turbulence Research,
1988
.
You do not currently have access to this content.