Simulations of the Taylor blast wave through a region of compressible isotropic turbulence are carried out. The turbulent fluctuations are either significantly attenuated or unchanged depending on the initial strength of the shock wave. It is shown through Eulerian simulations and Lagrangian tracking of particles that both these effects are primarily related to the vorticity-dilatation term in the vorticity transport equation. The turbulence length scales associated with this problem are defined and the effect on them quantified. Turbulence also distorts the shock, which can lead to substantial local variations in shock strength and asphericity. Transverse vorticity amplification is compared with linear planar shock-turbulence theory. Aspects that distinguish spherical shock-turbulence interaction from the planar case are stressed.

1.
H. S.
Ribner
, “
Shock-turbulence interaction and the generation of noise
,” NACA Report No. 1233,
1954
.
2.
S.
Lee
,
S. K.
Lele
, and
P.
Moin
, “
Direct numerical simulation of isotropic turbulence interacting with a weak shock wave
,”
J. Fluid Mech.
251
,
533
(
1993
).
3.
S.
Lee
,
S. K.
Lele
, and
P.
Moin
, “
Interaction of isotropic turbulence with shock waves: Effect of shock strength
,”
J. Fluid Mech.
340
,
225
(
1997
).
4.
K.
Mahesh
,
S. K.
Lele
, and
P.
Moin
, “
The influence of entropy fluctuations on the interaction of turbulence with a shock wave
,”
J. Fluid Mech.
334
,
353
(
1997
).
5.
K.
Mahesh
,
S.
Lee
,
S. K.
Lele
, and
P.
Moin
, “
The interaction of an isotropic field of acoustic waves with a shock wave
,”
J. Fluid Mech.
300
,
383
(
1995
).
6.
J.
Larsson
and
S. K.
Lele
, “
Direct numerical simulation of canonical shock/turbulence interaction
,”
Phys. Fluids
21
,
126101
(
2009
).
7.
G. I.
Taylor
, “
The formation of a blast wave by a very intense explosion
,”
Proc. R. Soc. London, Ser. A
201
,
159
(
1950
).
8.
J.
Von Neumann
, “
The point source solution
,” National Defense Research Committee Report No. AM-9,
1941
.
9.
A.
Sakurai
, “
On the propagation and structure of the blast wave -I
,”
J. Phys. Soc. Jpn.
8
,
662
(
1953
).
10.
G. B.
Whitham
, “
The propagation of spherical blast
,”
Proc. R. Soc. London, Ser. A
203
,
571
(
1950
).
11.
H. L.
Brode
, “
Numerical solutions of spherical blast waves
,”
J. Appl. Phys.
26
,
766
(
1955
).
12.
S.
Ghosh
and
K.
Mahesh
, “
Numerical simulation of the fluid dynamic effects of laser energy deposition in air
,”
J. Fluid Mech.
605
,
329
(
2008
).
13.
A. W.
Cook
, “
Artificial fluid properties for large-eddy simulation of compressible turbulent mixing
,”
Phys. Fluids
19
,
055103
(
2007
).
14.
A.
Bhagatwala
and
S. K.
Lele
, “
A modified artificial viscosity approach for compressible turbulence simulations
,”
J. Comput. Phys.
228
,
4965
(
2009
).
15.
C. C.
Lui
, “
A numerical investigation of shock-associated noise
,” Ph.D. thesis,
Stanford University
,
2004
.
16.
F. Q.
Hu
,
M. Y.
Hussaini
, and
J. L.
Manthey
, “
Low-dissipation and low-dispersion Runge-Kutta schemes for computational acoustics
,”
J. Comput. Phys.
124
,
177
(
1996
).
17.
J. R.
Ristorcelli
and
G. A.
Blaisdell
, “
Consistent initial conditions for DNS of compressible turbulence
,”
Phys. Fluids
9
,
4
(
1997
).
18.
H.
Tennekes
and
J. L.
Lumley
,
A First Course in Turbulence
(
MIT
,
Cambridge, MA
,
1972
).
19.
E.
Johnsen
,
J.
Larsson
,
A.
Bhagatwala
,
W. H.
Cabot
,
P.
Moin
,
B. J.
Olson
,
P. S.
Rawat
,
S. K.
Shankar
,
B.
Sjögreen
,
H. C.
Yee
,
X.
Zhong
, and
S. K.
Lele
, “
Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves
,”
J. Comput. Phys.
229
,
1213
(
2010
).
20.
M.
Lombardini
, “
Richtmyer-Meshkov instability in converging geometries
,” Ph.D. thesis,
Caltech
,
2008
.
21.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
Cambridge, England
,
2000
).
22.
G. G.
Bach
and
J. H. S.
Lee
, “
An analytical solution for blast waves
,”
AIAA J.
8
,
271
(
1970
).
You do not currently have access to this content.