The vortex breakdown inside a cylinder with a rotating top lid is controlled experimentally by injecting at the bottom a fluid with a small density difference. The density difference is obtained by mixing a heavy dye or alcohol with water in order to create a jet denser or lighter than water. The injection of a heavy fluid creates a buoyancy force downward, which counteracts the meridional recirculation in the cylinder and thus enhances the formation of a vortex breakdown bubble. The stability diagram shows that even a very small density difference of 0.02% is able to decrease by a factor of 2 the critical Reynolds number of appearance of the breakdown. On the other hand, the injection of a lighter fluid does not destroy the vortex breakdown. However, for large enough density differences (larger than 0.03%), the lighter fluid is able to pierce through the bubble and leads to a new structure of the vortex breakdown. Finally, a parallel is drawn between a light jet and a vortex ring generated at the bottom of the cylinder: strong vortex rings are able to pierce through the bubble, whereas weak vortex rings are simply advected around the bubble.

1.
S.
Leibovich
, “
The structure of vortex breakdown
,”
Annu. Rev. Fluid Mech.
10
,
221
(
1978
).
2.
D. L.
Kohlman
and
W. H.
Wentz
, “
Vortex breakdown on slender sharp-edged wings
,”
J. Aircr.
8
,
156
(
1971
).
3.
M. G.
Hall
, “
Vortex breakdown
,”
Annu. Rev. Fluid Mech.
4
,
195
(
1972
).
4.
M. V.
Lowson
and
A. J.
Riley
, “
Vortex breakdown control by delta wing geometry
,”
J. Aircr.
32
,
832
(
1995
).
5.
M. P.
Escudier
, “
Vortex breakdown: Observations and explanations
,”
Prog. Aerosp. Sci.
25
,
189
(
1988
).
6.
O. R.
Burggraf
and
M. R.
Foster
, “
Continuation or breakdown in tornado like vortices
,”
J. Fluid Mech.
80
,
685
(
1977
).
7.
R. P.
Davies-Jones
, “
Tornado dynamics
,” in
Thunderstorms: A Social, Scientific, and Technological Documentary
, edited by
E.
Kessler
(
University of Oklahoma Press
,
Nolan
,
1983
), Vol. 2, p. 297.
8.
A. K.
Gupta
,
D. G.
Lilley
, and
N.
Syred
,
Swirl Flows
(
Abacus
,
Kent, England
,
1984
).
9.
J.
Dusting
,
J.
Sheridan
, and
K.
Hourigan
, “
A fluid dynamics approach to bioreactor design for cell and tissue culture
,”
Biotechnol. Bioeng.
94
,
1196
(
2006
).
10.
G. A.
Thouas
,
J.
Sheridan
, and
K.
Hourigan
, “
A bioreactor model of mouse tumor progression
,”
J. Biomed. Biotechnol.
9
,
327
(
2007
).
11.
J. K.
Harvey
, “
Some observations of the vortex breakdown phenomenon
,”
J. Fluid Mech.
14
,
585
(
1962
).
12.
T.
Sarpkaya
, “
On stationary and travelling vortex breakdowns
,”
J. Fluid Mech.
45
,
545
(
1971
).
13.
J. H.
Faler
and
S.
Leibovich
, “
An experimental map of the internal structure of a vortex breakdown
,”
J. Fluid Mech.
86
,
313
(
1978
).
14.
H.
Ludwieg
, “
Zur erklarung der instabilitat der uber angestellten delta-flugeln auftretenden freien wirbelkerne
,”
Z. Flugwiss.
10
,
242
(
1962
).
15.
T. B.
Benjamin
, “
Theory of the vortex breakdown phenomenon
,”
J. Fluid Mech.
14
,
593
(
1962
).
16.
H. B.
Squire
, “
Analysis of the vortex breakdown phenomenon. Part 1
,”
Department of Aeronautics, Imperial College
Report No. 102,
1962
.
17.
S.
Wang
and
Z.
Rusak
, “
The dynamics of a swirling flow in a pipe and transition to axisymmetric vortex breakdown
,”
J. Fluid Mech.
340
,
177
(
1997
).
18.
H. U.
Vogel
, “
Experimentelle ergebnisse über die laminare strömung in einem zylindrischen gehaüse mit darin rotierender scheibe
,”
Max-Planck-Institut für Strömungsforschung
Technical Report Bericht 6,
1968
.
19.
B.
Ronnenberg
, “
Ein selbstjustierendes 3-komponenten-LDA nach dem vergleighstrahlverfaren, angewendt für untersuchungen in einer stationären zylindersymmetrischen drehströmung mit einem rühckströmgebiet
,”
Max-Planck-Institut für Strömungsforschung
Technical Report Bericht 20,
1977
.
20.
M. P.
Escudier
, “
Observations of the flow produced in a cylindrical container by a rotating endwall
,”
Exp. Fluids
2
,
189
(
1984
).
21.
A.
Spohn
,
M.
Mory
, and
E. J.
Hopfinger
, “
Observations of vortex breakdown in an open cylindrical container with rotating bottom
,”
Exp. Fluids
13
,
70
(
1993
).
22.
H. J.
Lugt
and
M.
Abboud
, “
Axisymmetric vortex breakdown in a container with a rotating lid
,”
J. Fluid Mech.
179
,
179
(
1987
).
23.
G. P.
Neitzel
, “
Streak-line motion during steady and unsteady axisymmetric vortex breakdown
,”
Phys. Fluids
31
,
958
(
1988
).
24.
J. M.
Lopez
, “
Axisymmetric vortex breakdown. Part 1: Confined swirling flow
,”
J. Fluid Mech.
221
,
533
(
1990
).
25.
G. L.
Brown
and
J. M.
Lopez
, “
Axisymmetric vortex breakdown. Part 2: Physical mechanism
,”
J. Fluid Mech.
221
,
553
(
1990
).
26.
J. M.
Lopez
and
A. D.
Perry
, “
Axisymmetric vortex breakdown. Part 3: Onset of periodic flow and chaotic advection
,”
J. Fluid Mech.
234
,
449
(
1992
).
27.
S.
Bhattacharyya
and
A.
Pal
, “
Axisymmetric vortex breakdown in a filled cylinder
,”
Int. J. Eng. Sci.
36
,
555
(
1998
).
28.
D. T.
Valentine
and
C. C.
Jahnke
, “
Flow induced in a cylinder with both ends walls rotating
,”
Phys. Fluids
6
,
2702
(
1994
).
29.
F.
Gallaire
,
J. M.
Chomaz
, and
P.
Huerre
, “
Closed-loop control of vortex breakdown: A model study
,”
J. Fluid Mech.
511
,
67
(
2004
).
30.
M. A.
Herrada
and
V.
Shtern
, “
Control of vortex breakdown by temperature gradients
,”
Phys. Fluids
15
,
3468
(
2003
).
31.
D.
Lo Jacono
,
J. N.
Sørensen
,
M. C.
Thompson
, and
K.
Hourigan
, “
Control of vortex breakdown in a closed cylinder with a small rotating rod
,”
J. Fluids Struct.
24
,
1278
(
2008
).
32.
B.
Jørgensen
,
J.
Sørensen
, and
N.
Aubry
, “
Control of vortex breakdown in a closed cylinder with a rotating lid
,”
Theor. Comput. Fluid Dyn.
24
,
483
(
2010
).
33.
B. T.
Tan
,
K. Y. S.
Liow
,
L.
Mununga
,
M. C.
Thompson
, and
K.
Hourigan
, “
Simulation of the control of vortex breakdown in a closed cylinder using a small rotating disk
,”
Phys. Fluids
21
,
024104
(
2009
).
34.
P.
Yu
,
T. S.
Lee
,
Y.
Zeng
, and
H. T.
Low
, “
Effects of conical lids on vortex breakdown in an enclosed cylindrical chamber
,”
Phys. Fluids
18
,
117101
(
2006
).
35.
H.
Husain
,
V.
Shtern
, and
F.
Husain
, “
Control of vortex breakdown by addition of near-axis swirl
,”
Phys. Fluids
15
,
271
(
2003
).
36.
L.
Mununga
,
K.
Hourigan
, and
M. C.
Thompson
, “
Confined flow vortex breakdown control using a small rotating disk
,”
Phys. Fluids
16
,
4750
(
2004
).
37.
S.
Khalil
,
K.
Hourigan
, and
M. C.
Thompson
, “
Effects of axial pulsing on unconfined vortex breakdown
,”
Phys. Fluids
18
,
038102
(
2006
).
38.
M. C.
Thompson
and
K.
Hourigan
, “
The sensitivity of steady vortex breakdown bubbles in confined cylinder flows to rotating lid misalignment
,”
J. Fluid Mech.
496
,
129
(
2003
).
39.
A.
Spohn
,
M.
Mory
, and
E. J.
Hopfinger
, “
Experiments on vortex breakdown in a confined flow generated by a rotating disc
,”
J. Fluid Mech.
370
,
73
(
1998
).
40.
M.
Brøns
,
W. Z.
Shen
,
J. N.
Sørensen
, and
W. J.
Zhu
, “
The influence of imperfections on the flow structure of steady vortex breakdown bubbles
,”
J. Fluid Mech.
578
,
453
(
2007
).
41.
M.
Brøns
,
M.
Thompson
, and
K.
Hourigan
, “
Dye visualization near a three-dimensional stagnation point: Application to the vortex breakdown bubble
,”
J. Fluid Mech.
622
,
177
(
2009
).
42.
A. Y.
Gelfat
,
P. Z.
Bar-Yoseph
, and
A.
Solan
, “
Three-dimensional instability of axisymmetric flow in a rotating lid-cylinder enclosure
,”
J. Fluid Mech.
438
,
363
(
2001
).
You do not currently have access to this content.