This study investigates the effects of continuum breakdown on the surface aerothermodynamic properties (pressure, stress, and heat transfer rate) of a sphere in a Mach 25 flow of reacting air in regimes varying from continuum to a rarefied gas. Results are generated using both continuum [computational fluid dynamics (CFD)] and particle [direct simulation Monte Carlo (DSMC)] approaches. The DSMC method utilizes a chemistry model that calculates the backward rates from an equilibrium constant. A preferential dissociation model is modified in the CFD method to better compare with the vibrationally favored dissociation model that is utilized in the DSMC method. Tests of these models are performed to confirm their validity and to compare the chemistry models in both numerical methods. This study examines the effect of reacting air flow on continuum breakdown and the surface properties of the sphere. As the global Knudsen number increases, the amount of continuum breakdown in the flow and on the surface increases. This increase in continuum breakdown significantly affects the surface properties, causing an increase in the differences between CFD and DSMC. Explanations are provided for the trends observed.

1.
W. G.
Vincenti
and
C. H.
Kruger
,
Introduction to Physical Gas Dynamics
(
Krieger
,
Malabar, FL
,
1965
).
2.
G. A.
Bird
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
(
Oxford University Press
,
Oxford
,
1994
).
3.
I. D.
Boyd
,
G.
Chen
, and
G. V.
Candler
, “
Predicting failure of the continuum fluid equations in transitional hypersonic flows
,”
Phys. Fluids
7
,
210
(
1995
).
4.
A. J.
Lofthouse
,
L. C.
Scalabrin
, and
I. D.
Boyd
, “
Velocity slip and temperature jump in hypersonic aerothermodynamics
,”
J. Thermophys. Heat Transfer
22
,
38
(
2008
).
5.
A. J.
Lofthouse
,
I. D.
Boyd
, and
M. J.
Wright
, “
Effects of continuum breakdown on hypersonic aerothermodynamics
,”
Phys. Fluids
19
,
027105
(
2007
).
6.
A. J.
Lofthouse
,
L. C.
Scalabrin
, and
I. D.
Boyd
, “
Hypersonic aerothermodynamics analysis across nonequilibrium regimes using continuum and particle methods
,” AIAA Paper No. 2007-3903,
2007
.
7.
T. D.
Holman
and
I. D.
Boyd
, “
Effects of continuum breakdown on the surface properties of hypersonic sphere
,”
J. Thermophys. Heat Transfer
23
,
660
(
2009
).
8.
S.
Dietrich
and
I. D.
Boyd
, “
Scalar and parallel optimized implementation of the direct simulation Monte Carlo method
,”
J. Comput. Phys.
126
,
328
(
1996
).
9.
K. C.
Kannenberg
and
I. D.
Boyd
, “
Strategies for efficient particle resolution in the direct simulation Monte Carlo method
,”
J. Comput. Phys.
157
,
727
(
2000
).
10.
L. C.
Scalabrin
and
I. D.
Boyd
, “
Development of an unstructured Navier-Stokes solver for hypersonic nonequilibrium aerothermodynamics
,” AIAA Paper No. 2005-5203,
2005
.
11.
L. C.
Scalabrin
and
I. D.
Boyd
, “
Numerical simulation of weakly ionized hypersonic flow for reentry configurations
,” AIAA Paper No. 2006-3773,
2006
.
12.
C. R.
Wilke
, “
A viscosity equation for gas mixtures
,”
J. Chem. Phys.
18
,
517
(
1950
).
13.
R. N.
Gupta
,
J. M.
Yos
,
R. A.
Thompson
, and
K.
Lee
, “
A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30,000 K
,”
NASA
Technical Report No. 1232,
1990
.
14.
G. E.
Palmer
and
M. J.
Wright
, “
Comparison of methods to compute high-temperature gas thermal conductivity
,” AIAA Paper No. 2003-3913,
2003
.
15.
G. E.
Palmer
and
M. J.
Wright
, “
Comparison of methods to compute high-temperature gas viscosity
,”
J. Thermophys. Heat Transfer
17
,
232
(
2003
).
16.
M. J.
Wright
,
D.
Bose
,
G. E.
Palmer
, and
E.
Levin
, “
Recommended collision integrals for transport property computations, Part 1: Air Species
,”
AIAA J.
43
,
2558
(
2005
).
17.
I. D.
Boyd
, “
Analysis of vibrational-translational energy transfer using the direct simulation Monte Carlo method
,”
Phys. Fluids A
3
,
1785
(
1991
).
18.
R. C.
Millikan
and
D. R.
White
, “
Systematics of vibrational relaxation
,”
J. Chem. Phys.
39
,
3209
(
1963
).
19.
C.
Park
,
Nonequilibrium Hypersonic Aerothermodynamics
(
Wiley
,
New York
,
1990
).
20.
N. E.
Gimelshein
,
S. F.
Gimelshein
, and
D. A.
Levin
, “
Vibrational relaxation rates in the direct simulation Monte Carlo method
,”
Phys. Fluids
14
,
4452
(
2002
).
21.
T. R.
Deschenes
,
T. D.
Holman
,
I. D.
Boyd
, and
T. E.
Schwartzentruber
, “
Analysis of internal energy transfer within a modular particle-continuum method
,” AIAA Paper No. 2009-1216,
2009
.
22.
I. D.
Boyd
, “
Modeling backward chemical rate processes in the direct simulation Monte Carlo method
,”
Phys. Fluids
19
,
126103
(
2007
).
23.
B. L.
Haas
and
I. D.
Boyd
, “
Models for direct Monte Carlo simulation of coupled vibration-dissociation
,”
Phys. Fluids A
5
,
478
(
1993
).
24.
I. D.
Boyd
and
T.
Gokcen
, “
Computation of axisymmetric and ionized flows using particle and continuum methods
,”
AIAA J.
32
,
1828
(
1994
).
25.
C.
Park
, “
The limits of two-temperature model
,” AIAA Paper No. 2010-911,
2010
.
26.
C.
Park
, “
A review of reaction rates in high temperature air
,” AIAA Paper No. 89-1740,
1989
.
27.
C.
Park
, “
Review of chemical-kinetic problems of future NASA missions, I: Earth entries
,”
J. Thermophys. Heat Transfer
7
,
385
(
1993
).
28.
C.
Park
, “
Review of chemical-kinetic problems of future NASA missions, II: Mars entries
,”
J. Thermophys. Heat Transfer
8
,
9
(
1994
).
29.
B. W.
Silverman
,
Density Estimation for Statistics and Data Analysis
(
Chapman and Hall
,
London
,
1986
).
30.
F. E.
Lumpkin
,
B. L.
Haas
, and
I. D.
Boyd
, “
Resolutions of differences between collision number definitions in particle and continuum simulations
,”
Phys. Fluids A
3
,
2282
(
1991
).
31.
T. I.
Gombosi
,
Gaskinetic Theory
(
Cambridge University Press
,
Cambridge
,
1994
).
32.
A. B.
Bailey
and
J.
Hiatt
, “
Free-flight measurements of sphere drag at subsonic, transonic, supersonic, and hypersonic speeds for continuum, transition, and near-free-molecular flow conditions
,” AEDC Technical Report No. 291,
1970
.
33.
J. J.
Bertin
,
Hypersonic Aerothermodynamics
(
American Institute of Aeronautics and Astronautics
,
Washington, DC
,
1994
).
You do not currently have access to this content.