Wind harvesting is fast becoming an important alternative source of energy. As wind farms become larger, they begin to attain scales at which two-way interactions with the atmospheric boundary layer (ABL) must be taken into account. Several studies have shown that there is a quantifiable effect of wind farms on the local meteorology, mainly through changes in the land-atmosphere fluxes of heat and moisture. In particular, the observed trends suggest that wind farms increase fluxes at the surface and this could be due to increased turbulence in the wakes. Conversely, simulations and laboratory experiments show that underneath wind farms, the friction velocity is decreased due to extraction of momentum by the wind turbines, a factor that could decrease scalar fluxes at the surface. In order to study this issue in more detail, a suite of large eddy simulations of an infinite (fully developed) wind turbine array boundary layer, including scalar transport from the ground surface without stratification, is performed. Results show an overall increase in the scalar fluxes of about 10%–15% when wind turbines are present in the ABL, and that the increase does not strongly depend upon wind farm loading as described by the turbines’ thrust coefficient and the wind turbines spacings. A single-column analysis including scalar transport shows that the presence of wind farms can be expected to increase slightly the scalar transport from the bottom surface and that this slight increase is due to a delicate balance between two strong opposing trends.

1.
S.
Baidya-Roy
,
S. W.
Pacala
, and
R. L.
Walko
, “
Can large scale wind farms affect local meteorology?
,”
J. Geophys. Res.
109
,
D19101
, doi: (
2004
).
2.
S.
Baidya-Roy
and
J.
Justin Traiteur
, “
Impacts of wind farms on surface air temperatures
,”
Proc. Natl. Acad. Sci. U.S.A.
107
,
17899
(
2010
).
3.
D.
Keith
,
J.
DeCarolis
,
D.
Denkenberger
,
D.
Lenschow
,
S.
Malyshev
,
S.
Pacala
, and
P. J.
Rasch
, “
The influence of large-scale wind power on global climate
,”
Proc. Natl. Acad. Sci. U.S.A.
101
,
16115
(
2004
).
4.
D.
Barrie
and
D.
Kirk-Davidoff
, “
Weather response to management of large wind turbine array
,”
Atmos. Chem. Phys.
10
,
769
(
2010
).
5.
M.
Calaf
,
C.
Meneveau
, and
J.
Meyers
, “
Large eddy simulation study of fully developed wind-turbine array boundary layers
,”
Phys. Fluids
22
,
015110
(
2010
).
6.
R. B.
Cal
,
J.
Lebrón
,
H. S.
Kang
,
L.
Castillo
, and
C.
Meneveau
, “
Experimental study of the horizontally averaged flow structure in a model wind-turbine array boundary layer
,”
J. Renewable Sustainable Energy
2
,
013106
(
2010
).
7.
H.
Snel
, “
Review of the present status of rotor aerodynamics
,”
Wind Energy
1
(
S1
),
46
(
1998
).
8.
T.
Burton
,
D.
Sharpe
,
N.
Jenkins
, and
E.
Bossanyi
,
Wind Energy Handbook
(
John Wiley & Sons, Ltd.
,
Hoboken, New Jersey
,
2001
).
9.
A.
Crespo
and
J.
Hernández
, “
Turbulence characteristics in wind-turbine wakes
,”
J. Wind Eng. Ind. Aerodyn.
61
,
71
(
1996
).
10.
J.
Whale
,
C. G.
Anderson
,
R.
Bareiss
, and
S.
Wagner
, “
An experimental and numerical study of the vortex structure in the wake of a wind turbine
,”
J. Wind Eng. Ind. Aerodyn.
84
,
1
(
2000
).
11.
L. A.
Ivanova
and
E. D.
Nadyozhina
, “
Wind flow deformation inside the wind farm
,”
J. Wind Eng. Ind. Aerodyn.
74–76
,
389
(
1998
).
12.
P. R.
Ebert
and
D. H.
Wood
, “
The near wake of a model horizontal-axis wind turbine—II. General features of the three-dimensional flow field
,”
Renewable Energy
18
,
513
(
1999
).
13.
M.
Magnusson
and
A.-S.
Smedman
, “
Air flow behind wind turbine
,”
J. Wind Eng. Ind. Aerodyn.
80
,
169
(
1999
).
14.
L. J.
Vermeer
,
J. N.
Sorensen
, and
A.
Crespo
, “
Wind turbine wake aerodynamics
,”
Prog. Aerosp. Sci.
39
,
467
(
2003
).
15.
J. N.
Sorensen
and
W. Z.
Shen
, “
Numerical modeling of wind turbine wakes
,”
J. Fluids Eng.
124
,
393
(
2002
).
16.
D.
Medici
and
P. H.
Alfredsson
, “
Measurements on a wind turbine wake: 3D effects and bluff body vortex shedding
,”
Wind Energy
9
,
219
(
2006
).
17.
L. P.
Chamorro
and
F.
Porté-Agel
, “
A wind-tunnel investigation of wind-turbine wakes: Boundary-layer turbulence effects
,”
Boundary-Layer Meteorol.
132
,
1299
(
2009
).
18.
P. R.
Ebert
and
D. H.
Wood
, “
The near wake of a model horizontal-axis wind turbine—I. Experimental arrangements and initial results
,”
Renewable Energy
12
,
225
(
1997
).
19.
U.
Hogstrom
,
D. N.
Asimakopoulos
,
H.
Kambezidis
,
C. G.
Helmis
, and
A.
Smedman
, “
A field study of the wake behind a 2 MW wind turbine
,”
Atmos. Environ.
22
,
803
(
1988
).
20.
J.
Kline
, “
Turbulence characteristics at Howden wind park I
,” in
AWEA conference “windpower,”
Honolulu, USA
,
1988
.
21.
J.
Van Leuven
and
D.
Stevens
, “
The wind farm of Zeebrugge: Experimental set-up
,”
J. Wind. Eng. Ind. Aerodyn.
27
,
139
(
1988
).
22.
S. G.
Voutsinas
,
K. G.
Rados
, and
A.
Zervos
, “
On the analysis of wake effects in wind parks
,”
J. Wind. Eng. Ind. Aerodyn.
14
,
204
(
1990
).
23.
N.
Troldborg
,
G. C.
Larsen
,
H. A.
Madsen
,
K. S.
Hansen
,
J. N.
Sørensen
,
R.
Mikkelsen
Numerical simulations of wake interaction between two wind turbines at various inflow conditions
Wind Energy
.
14
(
7
),
859
(
2011
).
24.
U.
Hassan
,
A. G.
Glendinning
, and
C. A.
Morgan
, “
A wind tunnel investigation of the wake structure and machine loads within small wind turbine farms
,” in
Proceedings of the 12th BWEA Wind Energy Conference
, edited by
T. D.
Davies
,
J. A.
Halliday
, and
J. P.
Palutikov
(
Norwich, UK
,
1990
), pp.
47
52
.
25.
S.
Frandsen
, “
On the wind speed reduction in the center of large clusters of wind turbines
,”
J. Wind. Eng. Ind. Aerodyn.
39
,
251
(
1992
).
26.
P. B. S.
Lissaman
, “
Energy effectiveness of arbitrary arrays of wind turbines
,” AIAA Paper No. 79-0114:1–7,
1979
.
27.
J. D.
Albertson
and
M. B.
Parlange
, “
Surface length-scales and shear stress: Implications for land-atmosphere interaction over complex terrain
,”
Water Resour. Res.
35
,
2121
(
1999
).
28.
S.
Frandsen
,
R.
Barthelmie
,
S.
Pryor
,
O.
Rathmann
,
S.
Larsen
,
J.
Hojstrup
, and
M.
Thogersen
, “
Analytical modelling of wind speed deficit in large offshore wind farms
,”
Wind. Energy
9
,
39
(
2006
).
29.
E.
Bou-Zeid
,
C.
Meneveau
, and
M. B.
Parlange
, “
A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows
,”
Phys. Fluids
17
,
025105
(
2005
).
30.
C.-H.
Moeng
, “
A large-eddy simulation model for the study of planetary boundary-layer turbulence
,”
J. Atmos. Sci.
41
,
2052
(
1984
).
31.
J. D.
Albertson
and
M. B.
Parlange
, “
Natural integration of scalar fluxes from complex terrain
,”
Adv. Water Resour.
23
,
239
(
1999
).
32.
F.
Porté-Agel
,
C.
Meneveau
, and
M. B.
Parlange
, “
A scale-dependent dynamic model for large-eddy simulation: Application to a neutral atmospheric boundary layer
,”
J. Fluid Mech.
415
,
261
(
2000
).
33.
C.
Canuto
,
M. Y.
Hussaini
,
A.
Quarteroni
, and
T. A.
Zang
,
Spectral Methods in Fluid Dynamics
(
Springer-Verlag
,
New York
,
1988
).
34.
M.
Frigo
and
S. G.
Johnson
, “
The design and implementation of FFTW3
,”
Proc. IEEE
93
,
216
(
2005
) (special issue on “Program Generation, Optimization, and Platform Adaptation”).
35.
H.
Tennekes
and
J. L.
Lumley
,
A First Course in Turbulence
(
MIT
,
Cambridge, MA
,
1972
).
36.
A.
Jimenez
,
A.
Crespo
,
E.
Migoya
, and
J.
Garcia
, “
Advances in large-eddy simulation of a wind turbine wake
,”
J. Phys.: Conf. Ser.
75
,
012041
(
2007
).
37.
A.
Jimenez
,
A.
Crespo
,
E.
Migoya
, and
J.
Garcia
, “
Large-eddy simulation of spectral coherence in a wind turbine wake
,”
Environ. Res. Lett.
3
,
015004
(
2008
).
38.
Y.-T.
Wu
and
F.
Porté-Agel
, “
Large-eddy simulation of wind-turbine wakes: Evaluation of turbine parameterization
,”
Boundary-Layer Meteorol.
138
,
345
(
2011
).
39.
J.
Meyers
and
C.
Meneveau
, “
Large eddy simulations of large wind-turbine arrays in the atmospheric boundary layer
,” in
48th AIAA Aerospace Sciences Meeting
,
Orlando, Florida
, 4–7 January
2010
.
40.
M. R.
Raupach
,
R. A.
Antonia
, and
S.
Rajagopalan
, “
Rough-wall turbulent boundary layers
,”
Appl. Mech. Rev.
44
,
1
(
1991
).
41.
H.
Lu
and
F.
Porté-Agel
, “
Large-eddy simulation of a very large wind farm in a stable atmospheric boundary layer
,”
Phys. Fluids
23
,
065101
(
2011
)
42.
F.
Porté-Agel
, “
A Scale-dependent dynamic model for scalar transport in large-eddy simulations of the atmospheric boundary layer
,”
Boundary-Layer Meteorol.
112
,
81
(
2004
).
43.
R.
Stoll
and
F.
Porté-Agel
, “
Dynamic subgrid-scale models for momentum and scalar fluxes in large-eddy simulations of neutrally stratified atmospheric boundary layers over heterogeneous terrain
,”
Water Resour. Res.
42
,
W01409
(
2006
).
44.
R.
Stoll
and
F.
Porté-Agel
, “
Surface heterogeneity effects on regional-scale fluxes in stable boundary layers: Surface temperature transitions
,”
J. Atmos. Sci.
66
,
412
(
2006
).
45.
P.
Moin
,
K. D.
Squires
, and
S.
Lee
, “
A dynamic subgrid-scale eddy viscosity model for compressible turbulence and scalar transport
,”
Phys. Fluids
3
,
2746
(
1991
).
46.
M.
Germano
,
U.
Piomelli
,
P.
Moin
, and
W. H.
Cabot
, “
A dynamic subgrid-scale eddy viscosity model
,”
Phys. Fluids A
3
,
1760
(
1991
).
You do not currently have access to this content.