Turbulent combustion of stoichiometric hydrogen-air mixture is simulated using direct numerical simulation methodology, employing complex chemical kinetics. Two flame configurations, freely propagating and V-flames stabilized behind a hot rod, are simulated. The results are analyzed to study the influence of flame configuration on the turbulence-scalar interaction, which is critical for the scalar gradient generation processes. The result suggests that this interaction process is not influenced by the flame configuration and the flame normal is found to align with the most extensive strain in the region of intense heat release. The combustion in the rod stabilized flame is found to be flamelet like in an average sense and the growth of flame-brush thickness with the downstream distance is represented well by Taylor theory of turbulent diffusion, when the flame-brushes are non-interacting. The thickness is observed to saturate when the flame-brushes interact, which is found to occur in the simulated rod stabilized flame with Taylor micro-scale Reynolds number of 97.

1.
K. N. C.
Bray
, “
The interaction between turbulence and combustion
,”
Proc. Combust. Inst.
17
,
223
(
1979
).
2.
P. A.
Libby
and
K. N. C.
Bray
, “
Implications of the laminar flamelet model in premixed turbulent combustion
,”
Combust. Flame
39(1)
,
33
(
1980
).
3.
J. W.
Rogerson
and
N.
Swaminathan
, “
Correlation between dilatation and scalar dissipation in turbulent premixed flames
,” in Proceedings of the European Combustion Meeting, Belgium,
2007
, pp.
111
136
.
4.
N.
Chakraborty
and
N.
Swaminathan
, “
Effetcs of Lewis number on scalar variance transport in premixed flames
,”
Flow, Turbul. Combust.
87
,
261
(
2011
).
5.
T.
Mantel
and
R.
Borghi
, “
A new model of premixed wrinkled flame propagation based on a scalar dissipation equation
,”
Combust. Flame
96
,
443
(
1994
).
6.
A.
Mura
and
R.
Borghi
, “
Towards an extended scalar dissipation equation for turbulent premixed combustion
,”
Combust. Flame
133
,
193
(
2003
).
7.
D.
Veynante
and
L.
Vervisch
, “
Turbulent combustion modeling
,”
Prog. Energy Combust. Sci.
28
,
193
(
2002
).
8.
H.
Kolla
,
J. W.
Rogerson
,
N.
Chakraborty
, and
N.
Swaminathan
, “
Scalar dissipation rate modeling and its validation
,”
Combust. Sci. Technol.
181
,
518
(
2009
).
9.
H.
Kolla
,
J. W.
Rogerson
, and
N.
Swaminathan
, “
Validation of a turbulent flame speed model across combustion regimes
,”
Combust. Sci. Technol.
182
,
284
(
2010
).
10.
N.
Swaminathan
and
K. N. C.
Bray
, “
Effect of dilatation on scalar dissipation in turbulent premixed flames
,”
Combust. Flame
143
,
549
(
2005
).
11.
N.
Chakraborty
and
N.
Swaminathan
, “
Effects of Lewis number on scalar dissipation transport and its modeling in turbulent premixed combustion
,”
Combust. Sci. Technol.
182
,
1201
(
2010
).
12.
E. S.
Richardson
,
R.
Sankaran
,
R. W.
Grout
, and
J. H.
Chen
, “
Numerical analysis of reaction-diffusion effects on species mixing rates in turbulent premixed methane-air combustion
,”
Combust. Flame
157
,
506
(
2010
).
13.
N.
Swaminathan
and
R. W.
Grout
, “
Interaction of turbulence and scalar fields in premixed flames
,”
Phys. Fluids
18
,
045102
(
2006
).
14.
N.
Chakraborty
and
N.
Swaminathan
, “
Influence of Damköhler number on turbulence–scalar interaction in premixed flames. I. Physical insight
,”
Phys. Fluids
19
,
045103
(
2007
).
15.
N.
Chakraborty
,
J. W.
Rogerson
, and
N.
Swaminathan
, “
A priori assessment of closures for scalar dissipation rate transport in turbulent premixed flames using direct numerical simulation
,”
Phys. Fluids
20
,
045106
(
2008
).
16.
N.
Chakraborty
,
J. W.
Rogerson
, and
N.
Swaminathan
, “
The scalar gradient alignment statistics of flame kernels and its modelling implications for turbulent premixed combustion
,”
Flow Turbul. Combust.
85
,
25
(
2010
).
17.
A.
Mura
,
K.
Tsuboi
, and
T.
Hasegawa
, “
Modelling of the correlation between velocity and reactive scalar gradients in turbulent premixed flames based on DNS data
,”
Combust. Theory Modell.
12(4)
,
671
(
2008
).
18.
A.
Mura
,
V.
Robin
,
M.
Champion
, and
T.
Hasegawa
, “
Small scale features of velocity and scalar fields in turbulent premixed flames
,”
Flow Turbul. Combust.
82
,
339
(
2009
).
19.
R. W.
Bilger
,
S. B.
Pope
,
K. N. C.
Bray
, and
J.
Driscoll
, “
Paradigms in turbulent combustion research
,”
Proc. Combust. Inst.
30
,
21
(
2005
).
20.
J. F.
Driscoll
, “
Turbulent premixed combustion: Flamelet structure and its effect on turbulent burning velocities
,”
Prog. Energy Combust. Sci.
34
,
91
(
2008
).
21.
S. H.
Kim
and
H.
Pitsch
, “
Scalar gradient and small-scale structure in turbulent premixed combustion
,”
Phys. Fluids
19
,
115104
(
2007
).
22.
G.
Hartung
,
J.
Hult
,
C. F.
Kaminski
,
T. W.
Rogerson
, and
N.
Swaminathan
, “
Effect of heat release in turbulence and scalar-turbulence interaction in premixed combustion
,”
Phys. Fluids
20(9)
,
035110
(
2008
).
23.
A.
Mura
and
M.
Champion
, “
Relevance of the Bray number in the small-scale modeling of turbulent premixed flames
,”
Combust. Flame
156
,
729
(
2009
).
24.
N.
Chakraborty
,
M.
Klein
, and
N.
Swaminathan
, “
Effects of Lewis number on the reactive scalar gradient alignment with local strain rate in turbulent premixed flames
,”
Proc. Combust. Inst.
32
,
1409
(
2009
).
25.
E.
Gutheil
,
G.
Balakrishnan
, and
F. A.
Williams
, in
Lecture Notes in Physics: Reduced Kinetic Mechanisms for Applications in Combustion Systems
, edited by
N.
Peters
and
B.
Rogg
(
Springer Verlag
,
New York
,
1993
), pp.
177
195
.
26.
R. J.
Kee
,
G.
Dixon-Lewis
,
J.
Warnatz
,
M. E.
Coltrin
, and
J. A.
Miller
,
A Fortran computer code package for the evaluation of gas-phase multicomponent transport properties
,
Sandia National Laboratories Report No. SAND86-8246
,
1986
.
27.
R. J.
Kee
,
F. M.
Rupley
, and
J. A.
Miller
, “Chemkin-II: A Fortran chemical kinetics package for the analysis of gas phase chemical kinetics,” Sandia National Laboratories Report No. SAND89-8009B,
1989
.
28.
M.
Tanahashi
,
M.
Fujimura
, and
T.
Miyauchi
, “
Coherent fine scale eddies in turbulent premixed flames
,”
Proc. Combust. Inst.
28
,
529
(
2000
).
29.
M.
Tanahashi
,
Y. I. Y.
Nada
, and
T.
Miyauchi
, “
Local flame structure in the well-stirred reactor regime
,”
Proc. Combust. Inst.
29
,
2041
(
2002
).
30.
Y.-S.
Shim
,
S.
Tanaka
,
M.
Tanahashi
, and
T.
Miyauchi
, “
Local structure and fractal characteristics of H2-air turbulent premixed flame
,”
Proc. Combust. Inst.
33
,
1455
(
2011
).
31.
T.
Poinsot
and
S. K.
Lele
, “
Boundary conditions for direct simulations of compressible viscos flows
,”
J. Comput. Phys.
101
,
104
(
1992
).
32.
M.
Baum
,
T. J.
Poinsot
, and
D.
Thévenin
, “
Accurate boundary conditions for multicomponent reactive flows
,”
J. Comput. Phys.
116
,
247
(
1994
).
33.
M.
Tanahashi
,
T.
Miyauchi
, and
J.
Ikeda
, “
Scaling law of coherent fine scale structure in homogeneous isotropic turbulence
,” in Proceedings of the 11th Symposium on Turbulent Shear Flow (Grenoble, France,
1997
), Vol.
1
, p.
4
.
34.
A. Y.
Poludnenko
and
E. S.
Oran
, “
The interaction of high-speed turbulence with flames: Global properties and internal flame structure
,”
Combust. Flame
157
,
995
(
2010
).
35.
M. J.
Dunn
,
A. R.
Masri
, and
R. W.
Bilger
, “
A new piloted premixed jet burner to study strong finite-rate chemistry effects
,”
Combust. Flame
151
,
46
(
2007
).
36.
N.
Swaminathan
,
R. W.
Bilger
, and
B.
Cuenot
, “
Relationship between turbulent scalar flux and conditional dilatation in premixed flames with complex chemistry
,”
Combust. Flame
126
,
1764
(
2001
).
37.
N.
Swaminathan
and
R. W.
Bilger
, “
Scalar dissipation, diffusion and dilatation in turbulent H2-air premixed flames with complex chemistry
,”
Combust. Theory Modell.
5
,
429
(
2001
).
38.
B.
Bédat
and
R. K.
Cheng
, “
Effects of buoyancy on premixed flame stabilization
,”
Combust. Flame
107
,
13
(
1996
).
39.
R. K.
Cheng
,
B.
Bédat
, and
L. W.
Kostiuk
, “
Effects of buoyancy on lean premixed V-flames. Part I. Laminar and turbulent flame structures
,”
Combust. Flame
116
,
360
(
1999
).
40.
S.
Pfadler
,
F.
Dinkelacker
,
F.
Beyrau
, and
A.
Leipertz
, “
High resolution dual-plane stereo-PIV for validation of subgrid scale models in large-eddy simulations of turbulent premixed flames
,”
Combust. Flame
156
,
1552
(
2009
).
41.
N.
Peters
,
Turbulent Combustion
(
Cambridge University Press
,
Cambridge, UK
,
2000
).
42.
K. N. C.
Bray
and
N.
Swaminathan
, “
Scalar dissipation and flame surface density in premixed turbulent combustion
,”
C. R. Mec.
334
,
466
(
2006
).
43.
A. N.
Lipatnikov
and
J.
Chomiak
, “
Molecular transport effects on turbulent flame propagation and structure
,”
Prog. Energy Combust. Sci. Chem.
31
,
1
(
2005
).
44.
G. I.
Taylor
, “
Statistical theory of turbulence. IV. Diffusion in a turbulent air stream
,”
Proc. R. Soc. London, Ser. A
151
,
465
(
1935
).
45.
A. N.
Lipatnikov
and
J.
Chomiak
, “
Turbulent flame speed and thickness: phenomenology, evaluation, and application in multi-dimensional simulations
,”
Prog. Energy Combust. Sci. Chem.
28
,
1
(
2002
).
46.
T. D.
Dunstan
,
N.
Swaminathan
,
K. N. C.
Bray
, and
R. S.
Cant
, “
Geometrical properties and turbulent flame speed measurements in stationary premixed V-flames using direct numerical simulation
,”
Flow Turbul. Combust.
87
,
237
(
2011
).
47.
N.
Chakraborty
and
N.
Swaminathan
, “
Influence of Damköhler number on turbulence–scalar interaction in premixed flames. II. Model development
,”
Phys. Fluids
19
,
045104
(
2007
).
48.
W. T.
Ashurst
,
A.
Kerstein
,
R.
Kerr
, and
C.
Gibson
, “
Alignment of vorticity and scalar gradient with strain rate in simulated Navier-Stokes turbulence
,”
Phys. Fluids
30
,
2342
(
1987
).
49.
G.
Batchelor
, “
The effect of homogeneous turbulence on material lines and surfaces
,”
Proc. R. Soc. London, Ser. A
213
(
1114
),
349
(
1952
).
You do not currently have access to this content.