Clustering is widely observed in many turbulent flows, where it results from the inability of finite inertia particles to comply with the different time scales, which characterize a turbulent field. Depending on their inertia, particles are found to be instantaneously organized in clusters, whose size depends on the Kolmogorov-Stokes number and which presumably form as a consequence of particle ejection from persistent vortical structures. In reacting flows, the abrupt acceleration of the fluid across the thin flame front due to combustion adds new and unexpected features. The particles follow such acceleration with a certain time lag which, coupled with the flame front fluctuations, gives rise to an entirely different mechanism of cluster formation. As suggested in previous studies, a possible indicator of this preferential localization is the so-called clustering index, quantifying the departure of the actual particle arrangement from the Poissonian distribution. Most of the clustering is found in the flame brush region, where it cannot be explained by the standard arguments used in cold flows. Actually, the effect is significant also for very light particles, where the simple model we propose, based on the Bray-Moss-Libby formalism, is able to account for most of the deviation from the Poissonian. When the particle inertia increases, the effect becomes larger and it is found to persist well within the region of the burned gases. The observed clustering is confirmed by a more precise analysis in terms of a generalization of the radial distribution function to inhomogeneous, anisotropic flows. The results taken from a direct numerical simulation with single step kinetics favorably compare with experiments on a premixed Bunsen turbulent flame. The present findings are expected to be of some relevance for the plenty of applications dealing with particles in presence of combustion, e.g., liquid droplet swarms for combustion temperature control, soot dynamics, or combustion-oriented particle image velocimetry.

1.
F.
Simmons
,
Rocket Exhaust Plume Phenomenology
(
Aerospace
,
El Segundo, California
,
2000
).
2.
I.
Kennedy
, “
Models of soot formation and oxidation
,”
Prog. Energy Combust. Sci.
23
,
95
(
1997
).
3.
M.
Frenklach
, “
Reaction mechanism of soot formation in flames
,”
Phys. Chem. Chem. Phys.
4
,
2028
(
2002
).
4.
M.
Tanahashi
,
S.
Murakami
,
G.
Choi
,
Y.
Fukuchi
, and
T.
Miyauchi
, “
Simultaneous CH-OH PLIF and stereoscopic PIV measurements of turbulent premixed flames
,”
Proc. Combust. Inst.
30
,
1665
(
2005
).
5.
J.
Frank
,
P.
Kalt
, and
R.
Bilger
, “
Measurements of conditional velocities in turbulent premixed flames by simultaneous OH PLIF and PIV
,”
Combust. Flame
116
,
220
(
1999
).
6.
S.
Goto
and
J. C.
Vassilicos
, “
Self-similar clustering of inertial particles and zero-acceleration points in fully developed two-dimensional turbulence
,”
Phys. Fluids
18
,
115103
(
2006
).
7.
J.
Bec
,
L.
Biferale
,
M.
Cencini
,
A.
Lanotte
,
S.
Musacchio
, and
F.
Toschi
, “
Heavy particle concentration in turbulence at dissipative and inertial scales
,”
Phys. Rev. Lett.
98
,
084502
(
2007
).
8.
F.
Toschi
and
E.
Bodenschatz
, “
Lagrangian properties of particles in turbulence
,”
Annu. Rev. Fluid Mech.
41
,
375
(
2009
).
9.
S.
Balachandar
and
J.
Eaton
, “
Turbulent dispersed multiphase flow
,”
Annu. Rev. Fluid Mech.
42
,
111
(
2010
).
10.
C.
Marchioli
and
A.
Soldati
, “
Mechanisms for particle transfer and segregation in a turbulent boundary layer
,”
J. Fluid Mech.
468
,
283
(
2002
).
11.
F.
Picano
,
G.
Sardina
, and
C.
Casciola
, “
Spatial development of particle-laden turbulent pipe flow
,”
Phys. Fluids
21
,
093305
(
2009
).
12.
P.
Gualtieri
,
F.
Picano
, and
C.
Casciola
, “
Anisotropic clustering of inertial particles in homogeneous shear flow
,”
J. Fluid Mech.
629
,
25
(
2009
).
13.
A.
Kostinski
and
R.
Shaw
, “
Scale-dependent droplet clustering in turbulent clouds
,”
J. Fluid Mech.
434
,
389
(
2001
).
14.
L.
Wang
and
M.
Maxey
, “
Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence
,”
J. Fluid Mech.
256
,
27
(
1993
).
15.
L.
Wang
,
A.
Wexler
, and
Y.
Zhou
, “
Statistical mechanical description and modelling of turbulent collision of inertial particles
,”
J. Fluid Mech.
415
,
117
(
2000
).
16.
E.
Longmire
and
J.
Eaton
, “
Structure of a particle-laden round jet
,”
J. Fluid Mech.
236
,
217
(
1992
).
17.
A.
Eidelman
,
T.
Elperin
,
N.
Kleeorin
,
G.
Hazak
,
I.
Rogachevskii
,
O.
Sadot
, and
I.
Sapir-Katiraie
, “
Mixing at the external boundary of a submerged turbulent jet
,”
Phys. Rev. E
79
,
026311
(
2009
).
18.
F.
Picano
,
G.
Sardina
,
P.
Gualtieri
, and
C.
Casciola
, “
Anomalous memory effects on transport of inertial particles in turbulent jets
,”
Phys. Fluids
22
,
051705
(
2010
).
19.
Y.
Hardalupas
,
A.
Taylor
, and
J.
Whitelaw
, “
Velocity and particle-flux characteristics of trubulent particle-laden jets
,”
Proc. R. Soc. London, Ser. A
426
,
31
(
1989
).
20.
R.
Miller
and
J.
Bellan
, “
Direct numerical simulation of a confined three-dimensional gas mixing layer with one evaporating hydrocarbon-droplet-laden stream
,”
J. Fluid Mech.
384
,
293
(
1999
).
21.
W.
Jones
,
S.
Lyra
, and
A.
Marquis
, “
Large eddy simulation of evaporating kerosene and acetone sprays
,”
Int. J. Heat Mass Transfer
53
,
2491
(
2010
).
22.
A.
Eidelman
,
T.
Elperin
,
N.
Kleeorin
,
B.
Melnik
, and
I.
Rogachevskii
, “
Tangling clustering of inertial particles in stably stratified turbulence
,”
Phys. Rev. E
81
,
56313
(
2010
).
23.
F.
Picano
,
F.
Battista
,
G.
Troiani
, and
C.
Casciola
, “
Dynamics of PIV seeding particles in turbulent premixed flames
,”
Exp. Fluids
50
(
1
),
75
(
2011
).
24.
J.
Xia
and
K.
Luo
, “
Direct numerical simulation of diluted combustion by evaporating droplets
,”
Proc. Combust. Inst.
32
,
2267
(
2009
).
25.
T.
Poinsot
,
D.
Veynante
, and
S.
Candel
, “
Quenching processes and premixed turbulent combustion diagrams
,”
J. Fluid Mech.
228
,
561
(
1991
).
26.
D.
Veynante
,
A.
Trouvé
,
K.
Bray
, and
T.
Mantel
, “
Gradient and counter-gradient scalar transport in turbulent premixed flames
,”
J. Fluid Mech.
332
,
263
(
1997
).
27.
N.
Chakraborty
,
M.
Katragadda
, and
R.
Cant
, “
Effects of lewis number on turbulent kinetic energy transport in premixed flames
,”
Phys. Fluids
23
,
075109
(
2011
).
28.
G.
Troiani
,
M.
Marrocco
,
S.
Giammartini
, and
C.
Casciola
, “
Counter-gradient transport in the combustion of a premixed CH4/air annular jet by combined PIV/OH-LIF
,”
Combust. Flame
156
,
608
(
2009
).
29.
M.
Maxey
and
J.
Riley
, “
Equation of motion for a small rigid sphere in a nonuniform flow
,”
Phys. Fluids
26
,
883
(
1983
).
30.
A.
Majda
and
J.
Sethian
, “
The derivation and numerical solution of equation for zero mach number combustion
,”
Combust. Sci. Technol.
42
,
185
(
1985
).
31.
N.
Waterson
and
H.
Deconinck
, “
Design principles for bounded higher-order convection schemes–A unified approach
,”
J. Comput. Phys.
224
,
182
(
2007
).
32.
F.
Picano
, “
Dynamics of turbulent jets
,” Ph.D. dissertation, Sapienza,
University of Rome
,
2007
.
33.
K.
Bray
,
P.
Libby
, and
J.
Moss
, “
Unified modeling approach for premixed turbulent combustion—Part I: General formulation
,”
Combust. Flame
61
,
87
(
1985
).
34.
S.
Corrsin
and
A.
Kistler
, “
Free-stream boundaries of turbulent flows
,” NACA Report No. 1244, Washington, DC,
1955
.
35.
S.
Sundaram
and
L.
Collins
, “
Collision statistics in an isotropic particle-laden turbulent suspension. Part 1. Direct numerical simulations
,”
J. Fluid Mech.
335
,
75
(
1997
).
36.
P.
Grassberger
and
I.
Procaccia
, “
Characterization of strange attractors
,”
Phys. Rev. Lett.
50
,
346
(
1983
).
37.
J.
Bec
,
A.
Celani
,
M.
Cencini
, and
S.
Musacchio
, “
Clustering and collisions of heavy particles in random smooth flows
,”
Phys. Fluids
17
,
073301
(
2005
).
You do not currently have access to this content.