The resonant phenomena in the wake behind a transversely vibrating elliptical cylinder with different axis ratios from Ar = 0.01 to Ar = 2.0 in the subcritical regime is numerically investigated. Navier-Stokes equations are solved by a spectral element code with a triangular mesh. Reynolds numbers range from 15 to 60 and the Roshko numbers range from 0.5 to 8 for different elliptical cylinders. Both the velocity and pressure responses in the wake are measured and analyzed. The investigations of the drag coefficients and the wake streamlines indicate that the cylinder’s axis ratio has a minor effect on the resonant frequency, Ron. However, the cylinder’s axis ratio is found to have a prominent effect on the resonant amplitude; namely, the smaller the cylinder’s axis ratio, the stronger the occurrence of resonant amplitude. The investigations of resonant responses of both the velocity and pressure and the probe locations may provide information for designing a flow meter based on pressure responses in the subcritical regime. It shows that the ratio of velocity and pressure responses poses a great linear relationship against the probe distance behind the vibrating cylinder. Moreover, a resonant method based on the different resonant frequencies at different probed locations in the subcritical regime to predict the critical conditions is examined and verified for different elliptical cylinders. Finally, based on the critical values found, a reduced Reynolds number and a reduced Roshko number are proposed to unify the different linear relationships resulting from different elliptical cylinder flows. The result indicates that the effect of axis ratio can be stripped off in the reduced plane, which may be applied to a more generalized cylinder shape.

1.
C. H. K.
Williamson
, “
Vortex dynamics in the cylinder wake
,”
Annu. Rev. Fluid Mech.
28
,
477
(
1996
).
2.
C. P.
Jackson
, “
A finite-element study of the onset of vortex shedding in flow past variously shaped bodies
,”
J. Fluid Mech.
182
,
23
(
1987
).
3.
M.
Provansal
,
C.
Mathis
, and
L.
Boyer
, “
Bénard-von Kármán instability: Transient and forced regimes
,”
J. Fluid Mech.
182
,
1
(
1987
).
4.
C. H. K.
Williamson
, “
Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers
,”
J. Fluid Mech.
206
,
579
(
1989
).
5.
C.
Norberg
, “
An experimental investigation of the flow around a circular-cylinder – influence of aspect ratio
,”
J. Fluid Mech.
258
,
287
(
1994
).
6.
B.
Kumar
and
S.
Mittal
, “
Prediction of the critical Reynolds number for flow past a circular cylinder
,”
Comput. Methods Appl. Mech. Eng.
195
(
44–47
),
6046
(
2006
).
7.
S.
Mittal
and
S.
Singh
, “
Vortex-induced vibrations at subcritical Re
,”
J. Fluid Mech.
534
,
185
(
2005
).
8.
E.
Buffoni
, “
Vortex shedding in subcritical conditions
,”
Phys. Fluids
15
,
814
(
2003
).
9.
L. D.
Landau
, “
К прoблеме TурбулeнTнoсTи [On the problem of turbulence]
,”
Dokl. Akad. Nauk SSSR
44
,
339
(
1944
).
10.
L. D.
Landau
and
E. M.
Lifschitz
,
Fluid Mechanics
, 2nd ed. (
Pergamon
,
Oxford, England
,
1987
).
11.
R. H.
Hernández
and
A.
Pacheco
, “
Numerical simulation and experiments of a control method to suppress the Bénard von Kármán instability
,”
The Eur. Phys. J. B
30
(
2
),
265
(
2002
).
12.
A.
Zebib
, “
Stability of viscous flow past a circular cylinder
,”
J. Eng. Math.
21
(
2
),
155
(
1987
).
13.
K. M.
Kelkar
and
S. V.
Patankar
, “
Numerical prediction of vortex shedding behind a square cylinder
,”
Int. J. Numer. Methods Fluids
14
(
3
),
327
(
1992
).
14.
S.
Mittal
and
B.
Kumar
, “
A stabilized finite element method for global analysis of convective instabilities in nonparallel flows
,”
Phys. Fluids
19
(
8
),
088105
(
2007
).
15.
P.
Huerre
and
P. A.
Monkewitz
, “
Local and global instabilities in spatially developing flows
,”
Annu. Rev. Fluid Mech.
22
,
473
(
1990
).
16.
M.
Morzynski
,
K.
Afanasiev
, and
F.
Thiele
, “
Solution of the eigenvalue problems resulting from global non-parallel flow stability analysis
,”
Comput. Methods Appl. Mech. Eng.
169
(
1–2
),
161
(
1999
).
17.
S. S.
Chen
,
R. H.
Yen
, and
A. B.
Wang
, “
Investigation of the resonant phenomenon of flow around a vibrating cylinder in a subcritical regime
,”
Phys. Fluids
23
(
1
),
014105
(
2011
).
18.
A.
Roshko
, “
On the drag and shedding frequency of two-dimensional bluff bodies
,”
NACA Technical Note No. 3169
(
1954
).
19.
P. W.
Bearman
, “
Investigation of flow behind a two-dimentional model with a blunt trailing edge and fitted with splitter plates
,”
J. Fluid Mech.
21
,
241
(
1965
).
20.
P. W.
Bearman
, “
On vortex street wakes
,”
J. Fluid Mech.
28
,
625
(
1967
).
21.
O. M.
Griffin
, “
Universal similarity in the wakes of stationary and vibrating bluff structures
,”
ASME Trans. J. Fluids Eng.
103
(
1
),
52
(
1981
).
22.
M.
Behr
,
D.
Hastreiter
,
S.
Mittal
, and
T. E.
Tezduyar
, “
Incompressible flow past a circular cylinder: Dependence of the computed flow field on the location of the lateral boundaries
,”
Comput. Methods Appl. Mech. Eng.
123
(
1–4
),
309
(
1995
).
23.
O.
Posdziech
and
R.
Grundmann
, “
A systematic approach to the numerical calculation of fundamental quantities of the two-dimensional flow over a circular cylinder
,”
J. Fluids Struct.
23
(
3
),
479
(
2007
).
24.
S. A.
Johnson
,
M. C.
Thompson
, and
K.
Hourigan
, “
Predicted low frequency structures in the wake of elliptical cylinders
,”
Eur. J. Mech. B/Fluids
23
(
1
),
229
(
2003
).
25.
P.
Sivakumar
,
R. P.
Bharti
, and
R. P.
Chhabra
, “
Steady flow of power-law fluids across an unconfined elliptical cylinder
,”
Chem. Eng. Sci.
62
(
6
),
1682
(
2007
).
26.
P. K.
Rao
,
A. K.
Sahu
, and
R. P.
Chhabra
, “
Flow of Newtonian and power-law fluids past an elliptical cylinder: A numerical study
,”
Ind. Eng. Chem. Res.
49
(
14
),
6649
(
2010
).
27.
B.
Kumar
and
S.
Mittal
, “
Effect of blockage on critical parameters for flow past a circular cylinder
,”
Int. J. Numer. Methods Fluids
50
(
8
),
987
(
2006
).
28.
Z.
Faruquee
,
D. S. K.
Ting
,
A.
Fartaj
,
R. M.
Barron
, and
R.
Carriveau
, “
The effects of axis ratio on laminar fluid flow around an elliptical cylinder
,”
Int. J. Heat Fluid Flow
28
(
5
),
1178
(
2007
).
29.
S.
Sen
,
S.
Mittal
, and
G.
Biswas
, “
Steady separated flow past a circular cylinder at low Reynolds numbers
,”
J. Fluid Mech.
620
,
89
(
2009
).
30.
J. D.
Hudson
and
S. C. R.
Dennis
, “
The flow of a viscous incompressible fluid past a normal flat-plate at low and intermediate reynolds-numbers – the wake
,”
J. Fluid Mech.
160
,
369
(
1985
).
31.
D. B.
Ingham
,
T.
Tang
, and
B. R.
Morton
, “
Steady two-dimensional flow past a normal flat-plate
,”
Z. Angew. Math. Phys.
42
(
4
),
584
(
1991
).
32.
B.
Fornberg
, “
A numerical study of steady viscous-flow past a circular-cylinder
,”
J. Fluid Mech.
98
,
819
(
1980
).
33.
T.
Ye
,
R.
Mittal
,
H. S.
Udaykumar
, and
W.
Shyy
, “
An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries
,”
J. Comput. Phys.
156
(
2
),
209
(
1999
).
34.
V. D.
Narasimhamurthy
,
H. I.
Andersson
, and
B.
Pettersen
, “
Cellular vortex shedding in the wake of a tapered plate
,”
J. Fluid Mech.
617
,
355
(
2008
).
35.
V. D.
Narasimhamurthy
,
H. I.
Andersson
, and
B.
Pettersen
, “
Steady viscous flow past a tapered cylinder
,”
Acta Mech.
206
(
1–2
),
53
(
2009
).
36.
S.
Mittal
, “
Stability of flow past a cylinder: Energy budget of eigenmodes
,”
Int. J. Numer. Methods Fluids
63
(
5
),
533
(
2010
).
37.
D. D.
Zheng
,
T.
Zhang
, and
Y.
Hu
, “
Experimental investigations of the location of a piezoelectric probe in a vortex flow sensor
,”
Meas. Sci. Technol.
18
(
12
),
3777
(
2007
).
38.
Y.
Nakamura
, “
Vortex shedding from bluff bodies and a universal Strouhal number
,”
J. Fluids Struct.
10
(
2
),
159
(
1996
).
39.
J. C.
Hu
,
Y.
Zhou
, and
C.
Dalton
, “
Effects of the corner radius on the near wake of a square prism
,”
Exp. Fluids
40
(
1
),
106
(
2006
).
40.
M. S. M.
Ali
,
C. J.
Doolan
, and
V.
Wheatley
, “
Low Reynolds number flow over a square cylinder with a splitter plate
,”
Phys. Fluids
23
(
3
),
033602
(
2011
).
You do not currently have access to this content.