We calculate velocity and temperature fields for Rayleigh-Benard convection in a chamber with a warm raft that floats along the top surface for Rayleigh number up to Ra = 20 000. Two-dimensional, infinite Prandtl number, Boussinesq approximation equations are numerically advanced in time from a motionless state in a chamber of length L′ and depth D′. We consider cases with an insulated raft and a raft of fixed temperature. Either oscillatory or stationary flow exists. In the case with an insulated raft over a fluid, there are only three parameters that govern the system: Rayleigh number (Ra), scaled chamber length (L = L′/D′), and scaled raft width (W). For W = 0 and L = 1, linear theory shows that the marginal state without a raft is at a Rayleigh number of 23π4=779.3, but we find that for the smallest W (determined by numerical grid size) the raft approaches the center monotonically in time for Ra<790. For 790<Ra<811, the raft has a decaying oscillation consisting of raft movement back and forth accompanied by convection cell reversal. For 811<Ra<871, the oscillation amplitude is constant in time and it increases with larger Ra. Finally, there is no raft motion for Ra>871. For larger raft widths, there is a range of W that produces raft oscillation at each Ra up to 20 000. Rafts in longer cavities (L = 2 and 4) have almost no oscillatory behavior. With a raft of temperature set to different values of Tr rather than insulating, a fixed Rayleigh number Ra=20000, a square chamber (L = 1), fixed raft width, and with internal heat generation, there are two ranges of oscillating flow.

1.
J. S.
Turner
,
Buoyancy Effects in Fluids
(
Cambridge University Press
,
New York
,
1973
), pp.
251
287
.
2.
J.
Elder
, “
Convective Self-propulsion of Continents
,”
Nature
214
,
657
(
1967
);
L. N.
Howard
,
W. V. R.
Malkus
, and
J. A.
Whitehead
, “
Self-convection of rafting heat sources: A model for continental drift
,”
Geophys. Fluid Dyn.
1
,
123
(
1970
);
J. A.
Whitehead
, “
Moving heaters as a model of continental drift
,”
Phys. Earth Planet. Interiors
5
,
199
(
1972
).
3.
J.
Zhang
and
A.
Libchaber
, “
Periodic boundary motion in thermal turbulence
,”
Phys. Rev. Lett.
84
,
4361
(
2000
);
[PubMed]
J. -Q.
Zhong
and
J.
Zhang
, “
Thermal convection with a freely moving top boundary
,”
Phys. Fluids
17
,
115105
(
2005
);
J. -Q.
Zhong
and
J.
Zhang
, “
Dynamical states of a mobile heat blanket on a thermally convecting fluid
,”
Phys. Rev. E
75
,
055301
(
2007
).
4.
B.
Liu
and
Zhang
J.
Self-induced cyclic reorganization of many bodies through thermal convection
,”
Phys Rev Lett.
100
,
244501
(
2008
).
5.
M.
Gurnis
, “
Large-scale mantle convection and the aggregation and dispersal of supercontinents
,”
Nature
332
,
695
(
1988
);
Zhong
and
M.
Gurnis
, “
Dynamic Feedback Between a Continentlike Raft and Thermal Convection
,”
J. Geophys. Res.
98
(
B7
),
12219
, (
1993
);
J. P.
Lowman
and
G. T.
Jarvis
, “
Mantle convection flow reversals due to continental collisions
,”
Geophys. Res. Lett.
20
,
2087
, (
1993
);
J. P.
Lowman
and
G. T.
Jarvis
, “
Mantle convection models of continental collision and breakup incorporating finite thickness plates
,”
Phys. Earth Planet. Inter.
88
(
1
),
53
(
1995
);
J. P.
Lowman
and
G. T.
Jarvis
, “
Continental collisions in wide aspect ratio and high Rayleigh number two-dimensional mantle convection models
,
J. Geophys. Res.
101
(
B11
),
25485
, (
1996
);
S. D.
King
,
J. P.
Lowman
and
C. W.
Gable
, “
Episodic tectonic plate reorganizations driven by mantle convection
,”
Earth Planet. Sci. Lett.
203
,
83
(
2002
);
D. E.
Koglin
Jr.
,
S. R.
Ghias
,
S. D.
King
,
G. T.
Jarvis
, and
J. P.
Lowman
, “
Mantle convection with reversing mobile plates: A benchmark study
,”
Geochem., Geophys. Geosyst.
6
,
Q09003
, doi: 10.1029/2005GC000924 (
2005
);
V. P.
Trubitsyn
and
V. V.
Rykov
A 3-D numerical model of the Wilson cycle
,”
J. Geodyn.
20
,
63
(
1995
);
L.
Guillou
and
C.
Jaupert
, “
On the effect of continents on mantle convection
,”
J. Geophys. Res.
100
(
B12
),
24217
, (
1995
);
B. R.
Phillips
, and
H. -P.
Bunge
, “
Supercontinent cycles disrupted by strong mantle plumes
,”
Geology
35
(
9
),
847
(
2007
);
R. R.
Phillips
and
N.
Coltice
, “
Temperature beneath continents as a function of continental cover and convective wavelength
,”
J. Geophys. Res.
115
,
B04408
, (
2010
);
C. A.
O’Neill
,
A. M.
Jellinek
, and
L.
Moresi
, “
Influence of supercontinents on deep mantle flow
,”
Gondwana Res.
15
(
3-4
),
276
(
2009
);
C. M
Cooper
,
A.
Lenardic
, and
L.
Moresi
, “
The thermal structure of stable continental lithosphere within a dynamic mantle
,”
Earth Planet. Sci. Lett.
222
,
807
(
2004
);
S. M.
Honda
,
M.
Yoshida
,
S.
Ootorii
, and
Y.
Iis
, “
The timescales of plume generation caused by continental aggregation
,”
Earth Planet. Sci. Lett.
176
,
31
(
2000
);
M.
Yoshida
,
Y.
Iise
, and
S.
Honda
, “
Generation of plumes under a localized high viscosity lid in 3-D spherical shell convection
,”
Geophys. Res. Lett.
26
,
947
(
1999
);
A.
Lenardic
,
L.
Guillou-Frottier
,
J -C.
Mareschal
,
C.
Jaupart
,
L. N.
Moresi
, and
W. M.
Kaula
, “
What the mantle sees: The effects of continents on mantle heat flow
,”
Geophys. Monogr.
121
,
95
(
2000
);
Z.-X.
Li
and
S.
Zhong
, “
Supercontinent–superplume coupling, true polar wander and plume mobility: Plate dominance in whole-mantle tectonics
,”
Phys. Earth Planet. Inter.
176
,
143
(
2009
);
A.
Lenardic
,
L. N.
Moresi
,
A. M.
Jellinek
, and
M.
Manga
, “
Continental insulation, mantle cooling, and the surface area of oceans and continents
,”
Earth Planet. Sci. Lett.
134
,
317
(
2005
);
N.
Coltice
,
B. R.
Phillips
,
H.
Bertrand
,
Y.
Ricard
, and
P.
Rey
, “
Global warming of the mantle at the origin of flood basalts over supercontinents
,”
Geology
35
,
391
, (
2007
);
C.
Grigne
,
S.
Labrosse
, and
P. J.
Tackley
, “
Convection under a lid of finite conductivity in wide aspect ratio models: Effect of continents on the wavelength of mantle flow
,”
J. Geophys. Res.
112
,
B08403
, (
2007
);
B. R.
Phillip
and
N.
Coltice
Temperature beneath continents as a function of continental cover and convective wavelength
,”
J. Geophys. Res.
115
,
B04408
, (
2010
).
6.
J -Q.
Zhong
, and
J.
Zhang
, “
Modeling the dynamics of a free boundary on turbulent thermal convection
,”
Phys. Rev. E.
76
,
1
(
2007
).
7.
L. A
Segel
, “
Nonlinear hydrodynamic stability theory and its applications to thermal convection and curved flows
,” in
Non-Equilibrium thermodynamics, Variational techniques, and stability
, edited by
R. J.
Donnelly
and
I.
Prigogine
(
University of Chicago Press
,
Chicago, IL
,
1966
).
8.
J. T
Stuart
, “
Nonlinear stability theory
,”
Ann. Rev. Fluid Mech.
3
,
347
(
1971
),
E.
Palm
, “
Nonlinear thermal convection
,”
Ann. Rev. Fluid Mech.
7
,
39
(
1975
).
9.
P. J.
Heron
and
J. P.
Lowman
, “
The effects of supercontinent size and thermal insulation on the formation of mantle plumes
,”
Tectonophysics
510
,
28
(
2011
).
You do not currently have access to this content.