The effect of partial confinement on the shape and volume of bubbles generated by injection of a constant flow rate of gas into a very viscous liquid is studied numerically and experimentally. Numerical solutions of the Stokes equations for the liquid and the evolution equation for the surface of a bubble, and experiments with two different liquids, show that cylindrical and conical walls concentric with a gas injection orifice in the horizontal bottom of the liquid may strongly affect the shape and volume of the bubbles, and can be used to control the size of the generated bubbles without changing the flow rate of gas. A well-known scaling law for the volume of the bubbles generated by injection of a high flow rate of gas in a very viscous unconfined liquid is extended to take into account the presence of cylindrical or conical walls around the injection orifice.

1.
R.
Kumar
and
N. R.
Kuloor
, “
The formation of bubbles and drops
,”
Adv. Chem. Eng.
8
,
255
(
1970
).
2.
R.
Clift
,
J. R.
Grace
, and
M. E.
Weber
,
Bubbles, Drops, and Particles
(
Academic
,
San Diego
,
1978
).
3.
N.
Rabiger
and
A.
Vogelpohl
,
Bubble Formation and its Movement in Newtonian and Non-Newtonian Liquids Encyclopedia of Fluid Mechanics
, Vol. 3, edited by
N. P.
Cheremisinoff
(
Gulf Publishing Corporation
,
Houston
,
1986
).
4.
M. S.
Longuet-Higgins
,
B. R.
Kerman
, and
K.
Lunde
, “
The release of air bubbles form and underwater nozzle
,”
J. Fluid Mech.
230
,
365
(
1991
).
5.
H. N.
Oguz
and
A.
Prosperetti
, “
Dynamics of bubble growth and detachment from a needle
,”
J. Fluid Mech.
257
,
111
(
1993
).
6.
S. S.
Sadhal
,
P. S.
Ayyaswamy
, and
J. N.
Chung
,
Transport Phenomena with Drops and Bubbles
(
Springer-Verlag
,
Berlin
,
1997
).
7.
G.
Corchero
A.
Medina
, and
F. J.
Higuera
, “
Effect of wetting conditions and flow rate on bubble formation at orifices submerged in water
,”
Colloids Surf., A
290
,
41
(
2006
).
8.
F. J.
Higuera
and
A.
Medina
, “
Injection and coalescence of bubbles in a quiescent invicid liquid
,”
Eur. J. Mech. B/Fluids
25
,
164
(
2006
).
9.
R. B.
Bird
,
R. C.
Armstrong
, and
U.
Hassager
,
Dynamics of Polymeric Liquids
(
Wiley-Interscience Publication
,
New York
,
1987
).
10.
D. L.
Sahagian
, “
Bubble migration and coalescence during solidification of basaltic lava flows
,”
J. Geol.
93
,
205
(
1985
).
11.
M.
Manga
and
H. A.
Stone
, “
Interactions between bubbles in magmas and lavas: Effects of the deformation
,”
J. Volcanol. Geotherm. Res.
63
,
269
(
1994
).
12.
M.
Manga
,
J.
Castro
, and
K. V.
Cashman
, “
Rheology of bubble-bearing magmas
,”
J. Volcanol. Geotherm. Res.
87
,
15
(
1998
).
13.
H.
Wong
,
D.
Rumschitzki
, and
C.
Maldarelli
, “
Theory and experiment on the low-Reynolds-number expansion and contraction of a bubble pinned at a submerged tube tip
,”
J. Fluid Mech.
356
,
93
(
1998
).
14.
F. J.
Higuera
, “
Injection and coalescence of bubbles in a very viscous liquid
,”
J. Fluid Mech.
530
,
369
(
2005
).
15.
J. F.
Davidson
and
B. O. G.
Schuler
, “
Bubble formation at an orifice in a viscous liquid
,”
Trans. Inst. Chem. Eng.
38
,
144
(
1960
).
16.
Q. C.
Bi
and
T. S.
Zhao
, “
Taylor bubbles in miniaturized circular and noncircular channels
,”
Int. J. Multiphase Flow
27
,
561
(
2001
).
17.
A. M.
Jacob
and
D. P.
Graver
 III
, “
An investigation of the influence of cell topography on epithelial mechanical stresses during pulmonary airway reopening
,”
Phys. Fluids
17
,
031502
(
2005
).
18.
V. S.
Ajaev
and
G. M.
Homsy
, “
Modeling shapes and dynamics of confined bubbles
,”
Annu. Rev. Fluid Mech.
38
,
277
(
2006
).
19.
K. E.
Brown
,
The Technology of Artificial Lift Methods
(
Penn-well Books
,
Oklahoma
,
1977
), Vol.
4
.
20.
C.
Pozrikidis
,
Boundary Integral and Singularity Methods for Linearized Viscous Flows
(
University Press
,
Cambridge
,
1992
).
21.
C.
Pozrikidis
,
A Practical Guide to Boundary Element Methods
(
Chapman and Hall/CRC
,
New York
,
2002
).
22.
W. N.
Bond
, “
Viscous flows through wide angled cones
,”
Philos. Mag.
50
,
1058
(
1925
).
23.
Y.
Chen
,
R.
Mertz
, and
R.
Kulenovic
, “
Numerical simulation of bubble formation on orifice plates with a moving contact line
,”
Int. J. Multiphase Flow
35
,
66
(
2009
).
24.
M.
Renardy
,
Y.
Renardy
, and
J.
Li
, “
Numerical simulation of moving contact line problems using a volume-of-fluid method
,”
J. Comput. Phys.
171
,
243
(
2001
).
25.
G. K.
Batchelor
,
An Introduction to Fluid Dynamics
(
Cambridge University Press
,
Cambridge
,
1967
).
26.
W.
Ren
and
W. E
, “
Boundary conditions for the moving contact line problem
,”
Phys. Fluids
19
,
022101
(
2007
).
27.
J. A.
Moriarty
and
L. W.
Schwartz
, “
Effective slip in numerical calculations of moving-contact-line problems
,”
J. Eng. Math.
26
,
81
(
1992
).
28.
F. P.
Bretherton
, “
The motion of long bubbles in tubes
,”
J. Fluid Mech.
10
,
166
(
1961
).
29.
L. W.
Schwartz
,
H. M.
Princen
, and
A. D.
Kiss
, “
On the motion of bubbles in capillary tubes
,”
J. Fluid Mech.
172
,
259
(
1986
).
30.
M. J.
Martinez
and
K. S.
Udell
, “
Boundary integral analysis of the creeping flow of long bubbles in capillaries
,”
J. Appl. Mech.
56
,
211
(
1989
).
31.
G. I.
Taylor
, “
Deposition of a viscous fluid on the wall of a tube
,”
J. Fluid Mech.
10
,
161
(
1961
).
32.
R.
Surio
,
P.
Doshi
, and
O.
Basaran
, “
Non-selfsimilar, linear dynamics during pinchoff of a hollow annular jet
,”
Phys. Fluids
16
,
4177
(
2004
).
33.
J. C.
Russ
,
The Image Processing Handbook
(
CRC
,
Boca Raton, Florida
,
2002
).
You do not currently have access to this content.