The spatial evolution of nonlinear long-crested irregular waves characterized by the JONSWAP spectrum is studied numerically using a nonlinear wave model based on a pseudospectral (PS) method and the modified nonlinear Schrödinger (MNLS) equation. In addition, new laboratory experiments with two different spectral bandwidths are carried out and a number of wave probe measurements are made to validate these two wave models. Strongly nonlinear wave groups are observed experimentally and their propagation and interaction are studied in detail. For the comparison with experimental measurements, the two models need to be initialized with care and the initialization procedures are described. The MNLS equation is found to approximate reasonably well for the wave fields with a relatively smaller Benjamin–Feir index, but the phase error increases as the propagation distance increases. The PS model with different orders of nonlinear approximation is solved numerically, and it is shown that the fifth-order model agrees well with our measurements prior to wave breaking for both spectral bandwidths.

1.
B. J.
West
,
K. A.
Brueckner
,
R. S.
Janda
,
D. M.
Milder
, and
R. L.
Milton
, “
A new numerical method for surface hydrodynamics
,”
J. Geophys. Res.
92
,
11803
(
1987
).
2.
W. J. D.
Bateman
,
C.
Swan
, and
P. H.
Taylor
, “
On the efficient numerical simulation of directionally spread surface water waves
,”
J. Comput. Phys.
174
,
277
(
2001
).
3.
M.
Tanaka
, “
Verification of Hasselmann’s energy transfer among surface gravity waves by direct numerical simulations of primitive equations
,”
J. Fluid Mech.
440
,
199
(
2001
).
4.
M.
Tanaka
, “
On the role of resonant interactions in the short-term evolution of deep-water ocean spectra
,”
J. Phys. Oceanogr.
37
,
1022
(
2007
).
5.
W.
Craig
and
C.
Sulem
, “
Numerical simulation of gravity waves
,”
J. Comput. Phys.
108
,
73
(
1993
).
6.
D. G.
Dommermuth
and
D. K. P.
Yue
, “
A high-order spectral method for the study of nonlinear gravity waves
,”
J. Fluid Mech.
184
,
267
(
1987
).
7.
D.
Clamond
and
J.
Grue
, “
A fast method for fully nonlinear water-wave computations
,”
J. Fluid Mech.
447
,
337
(
2001
).
8.
R. A.
Smith
, “
An operator expansion formalism for nonlinear surface waves over variable depth
,”
J. Fluid Mech.
363
,
333
(
1998
).
9.
W.
Craig
,
P.
Guyenne
,
D. P.
Nicholls
, and
C.
Sulem
, “
Hamiltonian long-wave expansions for water waves over a rough bottom
,”
Proc. R. Soc. London, Ser. A.
461
,
839
(
2005
).
10.
P.
Guyenne
and
D. P.
Nicholls
, “
A high-order spectral method for nonlinear water waves over moving bottom topography
,”
SIAM J. Sci. Comput. (USA)
30
,
81
(
2008
).
11.
Y.
Liu
,
D. G.
Dommermuth
, and
D. K. P.
Yue
, “
A high-order spectral method for nonlinear wave-body interactions
,”
J. Fluid Mech.
245
,
115
(
1992
).
12.
C. P.
Kent
and
W.
Choi
, “
An explicit formulation for the evolution of nonlinear surface waves interacting with a submerged body
,”
Int. J. Numer. Methods Fluids
55
,
1019
(
2007
).
13.
W.
Choi
,
C. P.
Kent
, and
C. J.
Schillinger
, in
Advances in Engineering Mechanics—Reflections and Outlooks in Honor of Theodore Y.-T. Wu
, edited by
A. T.
Chwang
,
M. H.
Teng
, and
D. T.
Valentine
(
World Scientific
,
Singapore
,
2005
), pp.
94
110
.
14.
D.
Fructus
,
D.
Calmond
,
J.
Grue
, and
O.
Kristiansen
, “
An efficient model for three-dimensional surface wave simulations: Part I: Free space problems
,”
J. Comput. Phys.
205
,
665
(
2005
).
15.
Z.
Tian
,
M.
Perlin
, and
W.
Choi
, “
Evaluation of a deep-water wave breaking criterion
,”
Phys. Fluids
20
,
066604
(
2008
).
16.
L.
Xu
and
P.
Guyenne
, “
Numerical simulation of three-dimensional nonlinear water waves
,”
J. Comput. Phys.
228
,
8446
(
2009
).
17.
Z.
Tian
,
M.
Perlin
, and
W.
Choi
, “
Energy dissipation in two-dimensional unsteady plunging breakers and an eddy viscosity model
,”
J. Fluid Mech.
655
,
217
(
2010
).
18.
V. E.
Zakharov
, “
Stability of periodic waves of finite amplitude on the surface of a deep fluid
,”
J. Appl. Mech. Tech. Phys.
9
,
190
(
1972
).
19.
V. P.
Krasitskii
, “
Canonical transformations in a theory of weakly nonlinear waves with a nondecay dispersion law
,”
Sov. Phys. JETP
71
,
921
(
1990
).
20.
V. P.
Krasitskii
, “
On reduced equations in the Hamiltonian theory of weakly nonlinear surface waves
,”
J. Fluid Mech.
272
,
1
(
1994
).
21.
M.
Stiassnie
and
L.
Shemer
, “
On modifications of the Zakharov equation for surface gravity waves
,”
J. Fluid Mech.
143
,
47
(
1984
).
22.
L.
Shemer
,
H.
Jiao
,
E.
Kit
, and
Y.
Agnon
, “
Evolution of a nonlinear wave field along a tank: experiments and numerical simulations based on the Zakharov equation
,”
J. Fluid Mech.
427
,
107
(
2001
).
23.
N.
Yokoyama
, “
Statistics of gravity waves obtained by direct numerical simulation
,”
J. Fluid Mech.
501
,
169
(
1999
).
24.
L.
Shemer
,
E.
Kit
,
H. -Y.
Jiao
, and
O.
Eitan
, “
Experiments on nonlinear wave groups in intermediate water depth
,”
J. Waterway, Port, Coastal, Ocean Eng.
124
,
320
(
1998
).
25.
K. B.
Dysthe
, “
Note on a modification of the nonlinear Schrödinger equation for application to deep water waves
,”
Proc. R. Soc. London, Ser. A
369
,
105
(
1979
).
26.
K.
Trulsen
and
K. B.
Dysthe
, “
A modified nonlinear Schrödinger equation for broader bandwidth gravity waves on deep water
,”
Wave Motion
24
,
281
(
1996
).
27.
E.
Lo
and
C. C.
Mei
, “
A numerical study of water-wave modulation based on a higher-order nonlinear Schrödinger equation
,”
J. Fluid Mech.
150
,
395
(
1985
).
28.
L.
Shemer
,
E.
Kit
, and
H.
Jiao
, “
An experimental and numerical study of the spatial evolution of unidirectional nonlinear water-wave groups
,”
Phys. Fluids
14
,
3380
(
2002
).
29.
K.
Trulsen
and
C. T.
Stansberg
, “
Spatial evolution of water surface waves: numerical simulation and experiment of bichromatic waves
,”
Proceedings of the 11th International Offshore and Polar Engineering Conference
, Stavanger, Norway, 17–22 June
2001
(
International Society of Offshore and Polar Engineers
,
Cupertino, CA
,
2001
), pp.
71
77
.
30.
D.
Clamond
,
M.
Francius
,
J.
Grue
, and
C.
Kharif
, “
Long time interaction of envelope solitons and freak wave formations
,”
Eur. J. Mech. B/Fluids
25
,
536
(
2006
).
31.
T. B.
Johannessen
and
C.
Swan
, “
Nonlinear transient water waves. Part I. A numerical method of computation with comparisons to 2-D laboratory data
,”
Appl. Ocean. Res.
19
,
293
(
1997
).
32.
T. B.
Johannessen
and
C.
Swan
, “
A laboratory study of the focusing of transient and directionally spread surface water waves
,”
Proc. R. Soc. London, Ser. A
457
,
971
(
2001
).
33.
T. B.
Johannessen
and
C.
Swan
, “
On the nonlinear dynamics of wave groups produced by the focusing of surface-water waves
,”
Proc. R. Soc. London, Ser. A
459
,
1021
(
2003
).
34.
L.
Shemer
,
K.
Goulitski
, and
E.
Kit
, “
Evolution of wide-spectrum unidirectional wave groups in a tank: An experimental and numerical study
,”
Eur. J. Mech. B/Fluids
26
,
193
(
2007
).
35.
C. A.
Spell
,
J.
Zhang
, and
R. E.
Randall
, “
Hybrid wave model for unidirectional irregular waves-Part II. Comparison with laboratory measurements
,”
Appl. Ocean. Res.
18
,
93
(
1996
).
36.
J.
Zhang
,
J.
Yang
,
J.
Wen
,
I.
Prislin
, and
R. E.
Randall
, “
Deterministic wave model for short-crested ocean waves: Part I. Theory and numerical scheme
,”
Appl. Ocean. Res.
21
,
167
(
1999
).
37.
F.
Bonnefoy
,
D.
Le Touzé
, and
P.
Ferrant
, “
A fully-spectral 3D time-domain model for second-order simulation of wavetank experiments. Part B: Validation, calibration versus experiments and sample applications
,”
Appl. Ocean. Res.
28
,
121
(
2006
).
38.
F.
Bonnefoy
,
D.
Le Touzé
, and
P.
Ferrant
, “
A fully-spectral 3D time-domain model for second-order simulation of wavetank experiments. Part A: Formulation, implementation and numerical properties
,”
Appl. Ocean. Res.
28
,
33
(
2006
).
39.
J.
Grue
,
D.
Clamond
,
M.
Huseby
, and
A.
Jensen
, “
Kinematics of extreme waves in deep water
,”
Appl. Ocean. Res.
25
,
355
(
2003
).
40.
K. B.
Dysthe
,
K.
Trulsen
,
H. E.
Krogstad
, and
H.
Socquet-Juglard
, “
Evolution of a narrow-band spectrum of random surface gravity waves
,”
J. Fluid Mech.
478
,
1
(
2003
).
41.
H.
Socquet-Juglard
,
K. B.
Dysthe
,
K.
Trulsen
,
H. E.
Krogstad
, and
J.
Liu
, “
Probability distributions of surface gravity waves during spectral changes
,”
J. Fluid Mech.
542
,
195
(
2005
).
42.
M.
Onorato
,
A. R.
Osborne
,
M.
Serio
, and
L.
Cavaleri
, “
Modulational instability and non-Gaussian statistics in experimental random water-wave trains
,”
Phys. Fluids
17
,
078101
(
2005
).
43.
M.
Onorato
,
A. R.
Osborne
,
M.
Serio
,
L.
Cavaleri
,
C.
Brandini
, and
C. T.
Stansberg
, “
Extreme waves, modulational instability and second order theory: Wave flume experiments on irregular waves
,”
Eur. J. Mech. B/Fluids
25
,
586
(
2006
).
44.
W.
Choi
, “
Nonlinear evolution equations for two-dimensional waves in a fluid of finite depth
,”
J. Fluid Mech.
295
,
381
(
1995
).
45.
E.
Kit
and
L.
Shemer
, “
Spatial versions of the Zakharov and Dysthe evolution equations for deep water gravity waves
,”
J. Fluid Mech.
450
,
201
(
2002
).
46.
T. B.
Benjamin
and
J. E.
Feir
, “
The desintegration of wavetrains on deep water
,”
J. Fluid Mech.
27
,
417
(
1967
).
47.
I. E.
Alber
, “
The effects of randomness on the stability of two-dimensional surface wavetrains
,”
Proc. R. Soc. London, Ser. A
363
,
525
(
1978
).
48.
D. A.
Crawford
,
B. M.
Lake
,
P. G.
Saffman
, and
H. C.
Yuen
, “
Effects of nonlinearity and spectral bandwidth on the dispersion relation and component phase speeds of surface gravity waves
,”
J. Fluid Mech.
112
,
1
(
1981
).
49.
P. A. E. M.
Janssen
, “
Nonlinear four-wave interactions and freak waves
,”
J. Phys. Oceanogr.
33
,
863
(
2003
).
You do not currently have access to this content.