A one parameter family of explicit solutions of the Euler equations is presented comprising a steadily propagating point vortex street situated in a region of uniform vorticity below a periodically deformed vortex jump separating a region of irrotational flow from a uniform shear flow. Various features of the new solutions are described. The limiting solutions are such that the vortex jump develops a periodic sequence of cusps. The stability of the equilibria is investigated numerically using a cylindrical contour dynamics algorithm. The equilibria not too close to the limiting case are found to be structurally robust for a large range of parameter values.
REFERENCES
1.
C. H. K.
Williamson
, “Vortex dynamics in the cylinder wake
,” Annu. Rev. Fluid Mech.
28
, 477
(1996
).2.
P. K.
Newton
, The -Vortex Problem (Springer-Verlag
, New York
, 2001
).3.
P. G.
Saffman
, Vortex Dynamics
(Cambridge University Press
, Cambridge, England
, 1992
).4.
H.
Aref
and M.
Stremler
, “On the motion of three point vortices in a periodic strip
,” J. Fluid Mech.
314
, 1
(1996
).5.
J.
Montaldi
, A.
Soulière
, and T.
Tokieda
, “Vortex dynamics on a cylinder
,” SIAM J. Appl. Dyn. Syst.
2
, 417
(2003
).6.
H.
Aref
, “On the equilibrium and stability of a row of point vortices
,” J. Fluid Mech.
290
, 167
(1995
).7.
J. T.
Stuart
, “On finite amplitude oscillations in laminar mixing layers
,” J. Fluid Mech.
29
, 417
(1967
).8.
G.
Baker
, P. G.
Saffman
, and J. S.
Sheffield
, “Structure of a linear array of hollow vortices of finite cross-section
,” J. Fluid Mech.
74
, 469
(1976
).9.
P. G.
Saffman
and R.
Szeto
, “Structure of a linear array of uniform vortices
,” Stud. Appl. Math.
65
, 223
(1981
).10.
R. T.
Pierrehumbert
and S. E.
Widnall
, “The structure of organized vortices in a free shear layer
,” J. Fluid Mech.
102
, 301
(1981
).11.
L.
Armi
, D.
Hebert
, N.
Oakey
, J. F.
Price
, P. L.
Richardson
, H. T.
Rossby
, and B.
Ruddick
, “Two years in the life of a Mediterranean salt lens
,” J. Phys. Oceanogr.
19
, 354
(1989
).12.
J. C.
Gascard
, A. J.
Watson
, M.
Messias
, K. A.
Olsson
, T.
Johannessen
, and K.
Simonsen
, “Long-lived vortices as a mode of deep ventilation in the Greenland Sea
,” Nature (London)
416
, 525
(2002
).13.
M. E.
Stern
and G. R.
Flierl
, “On the interaction of a vortex with a shear flow
,” J. Geophys. Res., [Oceans]
92
, 10733
, doi:10.1029/JC092iC10p10733 (1987
).14.
N. R.
McDonald
, “Steady nonradiating geophysical flow past a cylinder with circulation
,” Phys. Fluids
14
, 3018
(2002
).15.
N. R.
McDonald
, “A new translating quasigeostrophic V-state
,” Eur. J. Mech. B/Fluids
23
, 633
(2004
).16.
R. B.
Nelson
, “Modelling vortex-vortex and vortex-boundary interactions
,” Ph.D. thesis, University College London
, 2009
.17.
D. I.
Pullin
, “Contour dynamics methods
,” Annu. Rev. Fluid Mech.
24
, 89
(1992
).18.
D. G.
Dritschel
, “Contour dynamics and contour surgery: Numerical algorithms for extended, high-resolution modelling of vortex dynamics in two-dimensional, inviscid, incompressible flows
,” Comput. Phys. Rep.
10
, 77
(1989
).19.
D. G.
Crowdy
, “A class of exact multipolar vortices
,” Phys. Fluids
11
, 2556
(1999
).20.
P. J.
Davis
, The Schwarz Function and Its Applications
, Carus Mathematical Monographs
(AMS
, Rhode Island
, 1978
).21.
D. G.
Crowdy
, “Exact solutions for rotating vortex arrays with finite-area cores
,” J. Fluid Mech.
469
, 209
(2002
).22.
D. G.
Crowdy
and J. S.
Marshall
, “Analytical solutions for rotating vortex arrays involving multiple vortex patches
,” J. Fluid Mech.
523
, 307
(2005
).23.
E. A.
Overman
, “Steady-state solutions of the Euler equations in two dimensions II: Local analysis of limiting V-states
,” SIAM J. Appl. Math.
46
, 765
(1986
).24.
D. G.
Crowdy
, “Explicit solutions for a vortex-wave interaction
,” J. Fluid Mech.
513
, 161
(2004
).25.
M. A.
Stremler
, “Relative equilibria of singly periodic point vortex arrays
,” Phys. Fluids
15
, 3767
(2003
).26.
H.
Aref
and D. L.
Vainchtein
, “Point vortices exhibit asymmetric equilibria
,” Nature (London)
392
, 769
(1998
).27.
D. G.
Crowdy
and J. S.
Marshall
, “Growing vortex patches
,” Phys. Fluids
16
, 3122
(2004
).28.
© 2010 American Institute of Physics.
2010
American Institute of Physics
You do not currently have access to this content.