The effect of a thin control wire on the wake properties of the flow around a circular cylinder has been investigated numerically. The governing equations are solved using a spectral element method for a Reynolds number of ReD=100. The diameter ratio of the main cylinder and the wire equals D/d=50 so no vortex shedding is expected to occur for the wire. However, the vorticity introduced by the wire in the vicinity of the upper shear layer of the cylinder still affects the vortex dynamics in the wake of the main cylinder. The primary effect of the wire is the reduction of the velocity fluctuations in the vortex formation region of the main cylinder. The maximum decrement occurs at a wire position of yw/D=0.875. The secondary effect of the wire is observed in the kinematics of the vortices, leading to a modified vortex arrangement and strength difference between the upper and lower vortices. Due to these effects, for yw/D0.875, a downward wake deflection is observed, while for larger values of yw/D>0.875, an upward deflection is found. The maximum downward deflection occurs at wire position yw/D=0.75 where the maximum positive mean lift coefficient, minimum drag coefficient, and minimum fluctuating lift coefficient are seen. Based on the observations, it is concluded that the deflection of the wake is primarily caused by a modification of the vortex arrangement in the wake. This modified vortex arrangement is caused by different formation times of the upper and lower vortices, by different vortex strengths, or by both.

1.
H.
Lamb
,
Hydrodynamics
(
Cambridge University Press
,
New York
,
2006
).
2.
A.
Roshko
, “
On the development of turbulent wakes from vortex streets
,” NACA Technical Report No. 1191,
1954
.
3.
A.
Roshko
, “
On the wake and drag of bluff bodies
,”
J. Aeronaut. Sci.
22
,
124
(
1955
).
4.
J. H.
Gerrard
, “
Mechanics of the formation region of vortices behind bluff bodies
,”
J. Fluid Mech.
25
,
401
(
1966
).
5.
R.
Green
and
J.
Gerrard
, “
Vorticity measurements in the near wake of a circular cylinder at low Reynolds numbers
,”
J. Fluid Mech.
246
,
675
(
1993
).
6.
C. H. K.
Williamson
, “
Three-dimensional wake transition
,”
J. Fluid Mech.
328
,
345
(
1996
).
7.
C. H. K.
Williamson
, “
Vortex dynamics in the cylinder wake
,”
Annu. Rev. Fluid Mech.
28
,
477
(
1996
).
8.
H.
Choi
,
W. -P.
Jeon
, and
J.
Kim
, “
Control of flow over a bluff body
,”
Annu. Rev. Fluid Mech.
40
,
113
(
2008
).
9.
P. J.
Strykowski
and
K. R.
Sreenivasan
, “
On the formation and suppression of vortex shedding at low Reynolds numbers
,”
J. Fluid Mech.
218
,
71
(
1990
).
10.
S.
Mittal
and
A.
Raghuvanshi
, “
Control of vortex shedding behind circular cylinder for flows at low Reynolds numbers
,”
Int. J. Numer. Methods Fluids
35
,
421
(
2001
).
11.
A.
Dipankar
,
T.
Sengupta
, and
S. B.
Talla
, “
Suppression of vortex shedding behind a circular cylinder by another control cylinder at low Reynolds number
,”
J. Fluid Mech.
573
,
171
(
2007
).
12.
O.
Marquet
,
D.
Sipp
, and
L.
Jacuin
, “
Sensitivity analysis and passive control of cylinder flow
,”
J. Fluid Mech.
615
,
221
(
2008
).
13.
C. H.
Kuo
,
L. C.
Chiou
, and
C. C.
Chen
, “
Wake flow pattern modified by small control cylinders at low Reynolds number
,”
J. Fluids Struct.
23
,
938
(
2007
).
14.
H. -Q.
Zhang
,
U.
Fey
,
B. R.
Noack
,
M.
Konig
, and
H.
Eckelmann
, “
On the transition of the cylinder wake
,”
Phys. Fluids
7
,
779
(
1995
).
15.
H.
Sakamoto
and
H.
Haniu
, “
Optimum suppression of fluid forces acting on a circular cylinder
,”
ASME J. Fluids Eng.
116
,
221
(
1994
).
16.
C.
Dalton
,
Y.
Xu
, and
J.
Owen
, “
The suppression of lift on a circular cylinder due to vortex shedding at moderate Reynolds numbers
,”
J. Fluids Struct.
15
,
617
(
2001
).
17.
R. N.
Kieft
,
C. C. M.
Rindt
, and
A. A.
van Steenhoven
, “
The wake behaviour behind a heated horizontal cylinder
,”
Exp. Therm. Fluid Sci.
19
,
183
(
1999
).
18.
R. N.
Kieft
,
C. C. M.
Rindt
,
A. A.
van Steenhoven
, and
G. J. F.
van Heijst
, “
On the wake structure behind a heated horizontal cylinder in cross-flow
,”
J. Fluid Mech.
486
,
189
(
2003
).
19.
B.
Ahlborn
,
M. L.
Seto
, and
B. R.
Noack
, “
On drag, Strouhal number and vortex-street structure
,”
Fluid Dyn. Res.
30
,
379
(
2002
).
20.
W. J. P. M.
Maas
,
C. C. M.
Rindt
, and
A. A.
van Steenhoven
, “
The influence of heat on the 3D-transition of the von Kármán vortex street
,”
Int. J. Heat Mass Transfer
46
,
3069
(
2003
).
21.
L. J. P.
Timmermans
,
P. D.
Minev
, and
F. N.
van de Vosse
, “
An approximate projection scheme for incompressible flow using spectral elements
,”
Int. J. Numer. Methods Fluids
22
,
673
(
1996
).
22.
M.
Ren
,
C. C. M.
Rindt
, and
A. A.
van Steenhoven
, “
Three-dimensional transition of a water flow around a heated cylinder at Re=85 and Ri=1.0
,”
J. Fluid Mech.
566
,
195
(
2006
).
23.
C. H. K.
Williamson
, “
Defining a universal continuous Strouhal–Reynolds number relationship for the laminar vortex shedding of a circular cylinder
,”
Phys. Fluids
31
,
2742
(
1988
).
24.
C. H. K.
Williamson
and
G. L.
Brown
, “
A series in 1/Re to represent the Strouhal–Reynolds number relationship of the cylinder wake
,”
J. Fluids Struct.
12
,
1073
(
1998
).
25.
J.
Jeong
and
F.
Hussain
, “
On the identification of a vortex
,”
J. Fluid Mech.
285
,
69
(
1995
).
26.
H.
Vollmers
, “
Detection of vortices and quantitative evaluation of their main parameters from experimental velocity data
,”
Meas. Sci. Technol.
12
,
1199
(
2001
).
27.
G. K.
Batchelor
,
An Introduction to Fluid Dynamics
(
Cambridge University Press
,
New York
,
2000
).
28.
V.
Parezanović
and
O.
Cadot
, “
The impact of a local perturbation on global properties of a turbulent wake
,”
Phys. Fluids
21
,
071701
(
2009
).
You do not currently have access to this content.