We analyze the anisotropy of turbulence in an electrically conducting fluid in the presence of a uniform magnetic field, for low magnetic Reynolds number, using the quasistatic approximation. In the linear limit, the kinetic energy of velocity components normal to the magnetic field decays faster than the kinetic energy of component along the magnetic field [H. K. Moffatt, “On the suppression of turbulence by a uniform magnetic field,” J. Fluid Mech.28, 571 (1967)]. However, numerous numerical studies predict a different behavior, wherein the final state is characterized by dominant horizontal energy. We investigate the corresponding nonlinear phenomenon using direct numerical simulations. The initial temporal evolution of the decaying flow indicates that the turbulence is very similar to the so-called two-and-a-half-dimensional flow [D. Montgomery and L. Turner, “Two-and-a-half-dimensional magnetohydrodynamic turbulence,” Phys. Fluids25, 345 (1982)] and we offer an explanation for the dominance of horizontal kinetic energy.

1.
A.
Alemany
,
R.
Moreau
,
P. L.
Sulem
, and
U.
Frisch
, “
Influence of an external magnetic field on homogeneous MHD turbulence
,”
J. Mec.
18
,
277
(
1979
).
2.
H. K.
Moffatt
, “
On the suppression of turbulence by a uniform magnetic field
,”
J. Fluid Mech.
28
,
571
(
1967
).
3.
U.
Schumann
, “
Numerical simulation of the transition from three- to two-dimensional turbulence under a uniform magnetic field
,”
J. Fluid Mech.
74
,
31
(
1976
).
4.
O.
Zikanov
and
A.
Thess
, “
Direct numerical simulation of forced MHD turbulence at low magnetic Reynolds number
,”
J. Fluid Mech.
358
,
299
(
1998
).
5.
A.
Vorobev
,
O.
Zikanov
,
P. A.
Davidson
, and
B.
Knaepen
, “
Anisotropy of MHD turbulence at low magnetic Reynolds number
,”
Phys. Fluids
17
,
125105
(
2005
).
6.
P.
Burattini
,
M.
Kinet
,
D.
Carati
, and
B.
Knaepen
, “
Spectral energetics of quasi-static MHD turbulence
,”
Physica D
237
,
2062
(
2008
).
7.
P.
Burattini
,
M.
Kinet
,
D.
Carati
, and
B.
Knaepen
, “
Anisotropy of velocity spectra in quasistatic magnetohydrodynamic turbulence
,”
Phys. Fluids
20
,
065110
(
2008
).
8.
B.
Knaepen
,
S.
Kassinos
, and
D.
Carati
, “
Magnetohydrodynamics turbulence at moderate Reynolds number
,”
J. Fluid Mech.
513
,
199
(
2004
).
9.
S. C.
Kassinos
and
W. C.
Reynolds
, “
Structure-based modeling for homogeneous MHD turbulence
,” in
Center for Turbulence Research, Annual Research Briefs
(
Stanford University/NASA-Ames
,
Stanford, CA
,
1999
), pp.
301
315
.
10.
B.
Knaepen
and
R.
Moreau
, “
Magnetohydrodynamics turbulence at low magnetic Reynolds number
,”
Annu. Rev. Fluid Mech.
40
,
25
(
2008
).
11.
J.
Clyne
,
P.
Mininni
,
A.
Norton
, and
M.
Rast
, “
Interactive desktop analysis of high resolution simulations: Application to turbulent plume dynamics and current sheet formation
,”
New J. Phys.
9
,
301
(
2007
).
12.
J.
Jiménez
,
A. A.
Wray
,
P. G.
Saffman
, and
R. S.
Rogallo
, “
The structure of intense vorticity in isotropic turbulence
,”
J. Fluid Mech.
255
,
65
(
1993
).
13.
C.
Cambon
and
F. S.
Godeferd
, “
Inertial transfers in freely decaying, rotating, stably stratified and MHD turbulence
,”
Prog. Astronaut. Aeronaut.
162
,
150
(
1993
).
14.
In axisymmetric cases, only the b33 component is useful since all the other components are linked by the following relation (Ref. 16): bije,Z=3(δij/3δi3δj3)b33e,Z/2.
15.
C.
Cambon
and
L.
Jacquin
, “
Spectral approach to non-isotropic turbulence subjected to rotation
,”
J. Fluid Mech.
202
,
295
(
1989
).
16.
C.
Cambon
,
N. N.
Mansour
, and
F. S.
Godeferd
, “
Energy transfer in rotating turbulence
,”
J. Fluid Mech.
337
,
303
(
1997
).
17.
J. V.
Shebalin
,
W. H.
Matthaeus
, and
D.
Montgomery
, “
Anisotropy in MHD turbulence due to a mean magnetic field
,”
J. Plasma Phys.
29
,
525
(
1983
).
18.
D.
Montgomery
and
L.
Turner
, “
Two-and-a-half-dimensional magnetohydrodynamic turbulence
,”
Phys. Fluids
25
,
345
(
1982
).
19.
G. K.
Batchelor
, “
Small-scale variation of convected quantities like temperature in turbulent fluid
,”
J. Fluid Mech.
5
,
113
(
1959
).
20.
W. J. T.
Bos
,
B.
Kadoch
,
K.
Schneider
, and
J. -P.
Bertoglio
, “
Inertial range scaling of the scalar flux spectrum in two-dimensional turbulence
,”
Phys. Fluids
21
,
115105
(
2009
).
You do not currently have access to this content.