The origin and properties of time-independent spatially localized binary fluid convection in a layer of porous material heated from below are studied. Different types of single and multipulse states are computed using numerical continuation, and the results related to the presence of homoclinic snaking of single and multipulse states.

1.
O.
Batiste
and
E.
Knobloch
, “
Simulations of localized states of stationary convection in H3eH4e mixtures
,”
Phys. Rev. Lett.
95
,
244501
(
2005
).
2.
O.
Batiste
,
E.
Knobloch
,
A.
Alonso
, and
I.
Mercader
, “
Spatially localized binary fluid convection
,”
J. Fluid Mech.
560
,
149
(
2006
).
3.
S.
Blanchflower
, “
Magnetohydrodynamic convectons
,”
Phys. Lett. A
261
,
74
(
1999
).
4.
S.
Blanchflower
and
N.
Weiss
, “
Three-dimensional magnetohydrodynamic convectons
,”
Phys. Lett. A
294
,
297
(
2002
).
5.
J. H. P.
Dawes
, “
Localized convection cells in the presence of a vertical magnetic field
,”
J. Fluid Mech.
570
,
385
(
2007
).
6.
K.
Ghorayeb
, “
Etude des écoulements de convection thermosolutale en cavité rectangulaire
,” Ph.D. thesis,
Université Paul Sabatier
, Toulouse 3, France,
1997
.
7.
K.
Ghorayeb
and
A.
Mojtabi
, “
Double diffusive convection in a vertical rectangular cavity
,”
Phys. Fluids
9
,
2339
(
1997
).
8.
A.
Bergeon
and
E.
Knobloch
, “
Periodic and localized states in natural doubly diffusive convection
,”
Physica D
237
,
1139
(
2008
).
9.
A.
Bergeon
and
E.
Knobloch
, “
Spatially localized states in natural doubly diffusive convection
,”
Phys. Fluids
20
,
034102
(
2008
).
10.
A.
Bergeon
,
J.
Burke
,
E.
Knobloch
, and
I.
Mercader
, “
Eckhaus instability and homoclinic snaking
,”
Phys. Rev. E
78
,
046201
(
2008
).
11.
T. M.
Schneider
,
J. F.
Gibson
, and
J.
Burke
, “
Snakes and ladders: Localized solutions of plane Couette flow
,”
Phys. Rev. Lett.
104
,
104501
(
2010
).
12.
J.
Burke
and
E.
Knobloch
, “
Snakes and ladders: Localized states in the Swift–Hohenberg equation
,”
Phys. Lett. A
360
,
681
(
2007
).
13.
J. H. P.
Dawes
, “
Modulated and localized states in a finite domain
,”
SIAM J. Appl. Dyn. Syst.
8
,
909
(
2009
).
14.
J.
Burke
and
E.
Knobloch
, “
Homoclinic snaking: Structure and stability
,”
Chaos
17
,
037102
(
2007
).
15.
P.
Coullet
,
C.
Riera
, and
C.
Tresser
, “
A new approach to data storage using localized structures
,”
Chaos
14
,
193
(
2004
).
16.
J.
Burke
and
E.
Knobloch
, “
Localized states in the generalized Swift–Hohenberg equation
,”
Phys. Rev. E
73
,
056211
(
2006
).
17.
G. H. M.
van der Heijden
,
A. R.
Champneys
, and
J. M. T.
Thompson
, “
Spatially complex localisation in twisted elastic rods constrained to a cylinder
,”
Int. J. Solids Struct.
39
,
1863
(
2002
).
18.
M. K.
Wadee
,
C. D.
Coman
, and
A. P.
Bassom
, “
Solitary wave interaction phenomena in a strut-buckling model incorporating restabilisation
,”
Physica D
163
,
26
(
2002
).
19.
J.
Knobloch
and
T.
Wagenknecht
, “
Snaking of multiple homoclinic orbits in reversible systems
,”
SIAM J. Appl. Dyn. Syst.
7
,
1397
(
2008
).
20.
J.
Burke
and
E.
Knobloch
, “
Multipulse states in the Swift–Hohenberg equation
,”
Discrete Contin. Dyn. Syst. Supplement
2009
,
109
.
21.
G. W.
Hunt
,
M. A.
Peletier
,
A. R.
Champneys
,
P. D.
Woods
,
M.
Ahmer Wadee
,
C. J.
Budd
, and
G. J.
Lord
, “
Cellular buckling of long structures
,”
Nonlinear Dyn.
21
,
3
(
2000
).
22.
G.
Kozyreff
and
S. J.
Chapman
, “
Asymptotics of large bound states of localized structures
,”
Phys. Rev. Lett.
97
,
044502
(
2006
).
23.
S. J.
Chapman
and
G.
Kozyreff
, “
Exponential asymptotics of localized patterns and snaking bifurcation diagrams
,”
Physica D
238
,
319
(
2009
).
24.
M.
Beck
,
J.
Knobloch
,
D. J. B.
Lloyd
,
B.
Sandstede
, and
T.
Wagenknecht
, “
Snakes, ladders and isolas of localized patterns
,”
SIAM J. Math. Anal.
41
,
936
(
2009
).
25.
P. D.
Woods
and
A. R.
Champneys
, “
Heteroclinic tangles and homoclinic snaking in the unfolding of a degenerate Hamiltonian–Hopf bifurcation
,”
Physica D
129
,
147
(
1999
).
26.
P.
Coullet
,
C.
Riera
, and
C.
Tresser
, “
Stable static localized structures in one dimension
,”
Phys. Rev. Lett.
84
,
3069
(
2000
).
27.
I.
Mercader
,
O.
Batiste
,
A.
Alonso
, and
E.
Knobloch
, “
Convectons in periodic and bounded domains
,”
Fluid Dyn. Res.
42
,
025505
(
2010
).
28.
D. A.
Nield
and
A.
Bejan
,
Convection in Porous Media
(
Springer
,
New York
,
1992
).
29.
A.
Mojtabi
and
M. -C.
Charrier–Mojtabi
, “
Double-diffusive convection in porous media
,” in
Handbook of Porous Media
, 2nd ed., edited by
K.
Vafai
(
Taylor & Francis
,
London
,
2005
), Chap. 7, p.
269
.
30.
D. A.
Bratsun
,
D. V.
Lyubimov
, and
B.
Roux
, “
Co-symmetry breakdown in problems of thermal convection in porous medium
,”
Physica D
82
,
398
(
1995
).
31.
L. S.
Tuckerman
, “
Steady-state solving via Stokes preconditioning: Recursion relations for elliptic operators
,” in
Proceedings of the 11th International Conference on Numerical Methods in Fluid Dynamics
, edited by
D. L.
Dwoyer
,
M. Y.
Hussaini
, and
R. G.
Voigt
(
Springer
,
New York
,
1989
), p.
573
.
32.
C. K.
Mamun
and
L. S.
Tuckerman
, “
Asymmetry and Hopf bifurcation in spherical Couette flow
,”
Phys. Fluids
7
,
80
(
1995
).
33.
M.
Deville
,
P. F.
Fischer
, and
E. H.
Mund
,
High-Order Methods for Incompressible Fluid Flow
(
Cambridge University Press
,
Cambridge
,
2002
).
34.
M. C.
Charrier-Mojtabi
,
B.
Elhajjar
, and
A.
Mojtabi
, “
Analytical and numerical stability analysis of Soret-driven convection in a horizontal porous layer
,”
Phys. Fluids
19
,
124104
(
2007
).
35.
I.
Mercader
,
O.
Batiste
,
A.
Alonso
, and
E.
Knobloch
, “
Localized pinning states in closed containers: Homoclinic snaking without bistability
,”
Phys. Rev. E
80
,
025201
(R) (
2009
).
36.
A.
Alonso
,
O.
Batiste
,
E.
Knobloch
, and
I.
Mercader
, “
Convectons
,” in
Localized States in Physics: Solitons and Patterns
, edited by
O.
Descalzi
(
Springer
,
New York
,
2010
).
You do not currently have access to this content.