The effect of the density and viscosity ratio on the motion of single drops rising in immiscible liquids is computationally investigated. The density and viscosity ratio play an important role in droplet morphology, unstable droplet behavior, and terminal droplet characteristics. The numerical method used in this investigation is a coupled level-set and volume-of-fluid method together with a sharp interface treatment for the interfacial jump conditions. The computations assume an axisymmetric geometry. Drop rise motion is highly dependent on the viscosity ratio. The results reported in this paper augment the information provided by the correlation table for bubble rise motion by Bhaga and Weber [“Bubbles in viscous liquids: Shapes, wakes and velocities,” J. Fluid Mech.105, 61 (1981)]. A drop-system with a large viscosity ratio is susceptible to exhibiting unstable motion in the large Eötvös number regions; an unstable drop can show complicated behavior with various breakup modes that are dependent on the Morton number. With regard to the effect of the density ratio, it is observed that the difference between a bubble and a drop with “equivalent” properties is not prominent except in the low Morton number regions. The results of investigating the effect of the density and viscosity ratio on drop motion indicate that the Morton number, Eötvös numbers, and viscosity ratio are the primary governing parameters and the density ratio is a secondary governing parameter.

1.
D.
Green
and
R.
Perry
,
Perry’s Chemical Engineers’ Handbook
, 8th ed. (
McGraw-Hill
,
New York
,
2007
).
2.
T.
Wairegi
and
J. R.
Grace
, “
The behaviour of large drops in immiscible liquids
,”
Int. J. Multiphase Flow
3
,
67
(
1976
).
3.
M.
Kojima
,
E. J.
Hinch
, and
A.
Acrivos
, “
The formation and expansion of a toroidal drop moving in a viscous fluid
,”
Phys. Fluids
27
,
19
(
1984
).
4.
N.
Baumann
,
D. D.
Joseph
,
P.
Mohr
, and
Y.
Renardy
, “
Vortex rings of one fluid in another in free fall
,”
Phys. Fluids A
4
,
567
(
1992
).
5.
C. J.
Koh
and
L. G.
Leal
, “
An experimental investigation on the stability of viscous drops translating through a quiescent fluid
,”
Phys. Fluids A
2
,
2103
(
1990
).
6.
C. J.
Koh
and
L. G.
Leal
, “
The stability of drop shapes for translation at zero Reynolds number through a quiescent fluid
,”
Phys. Fluids A
1
,
1309
(
1989
).
7.
C.
Pozrikidis
, “
The instability of a moving viscous drop
,”
J. Fluid Mech.
210
,
1
(
1990
).
8.
D. S.
Dandy
and
L. G.
Leal
, “
Buoyancy-driven motion of a deformable drop through a quiescent liquid at intermediate Reynolds numbers
,”
J. Fluid Mech.
208
,
161
(
1989
).
9.
Z. -T.
Deng
and
S. -M.
Jeng
, “
Numerical simulation of droplet formation in convective flows
,”
AIAA J.
30
,
1290
(
1992
).
10.
S.
Zaleski
,
J.
Li
, and
S.
Succi
, “
Two-dimensional Navier–Stokes simulation of deformation and breakup of liquid patches
,”
Phys. Rev. Lett.
75
,
244
(
1995
).
11.
L. A.
Bozzi
,
J. Q.
Feng
,
T. C.
Scott
, and
A. J.
Pearlstein
, “
Steady axisymmetric motion of deformable drops falling or rising through a homoviscous fluid in a tube at intermediate Reynolds number
,”
J. Fluid Mech.
336
,
1
(
1997
).
12.
J.
Han
and
G.
Tryggvason
, “
Secondary breakup of axisymmetric liquid drops. I. Acceleration by a constant body force
,”
Phys. Fluids
11
,
3650
(
1999
).
13.
J.
Han
and
G.
Tryggvason
, “
Secondary breakup of axisymmetric liquid drops. II. Impulsive acceleration
,”
Phys. Fluids
13
,
1554
(
2001
).
14.
B. T.
Helenbrook
and
C. F.
Edwards
, “
Quasi-steady deformation and drag of uncontaminated liquid drops
,”
Int. J. Multiphase Flow
28
,
1631
(
2002
).
15.
R. -Q.
Duan
,
S.
Koshizuka
, and
Y.
Oka
, “
Two-dimensional simulation of drop deformation and breakup at around the critical Weber number
,”
Nucl. Eng. Des.
225
,
37
(
2003
).
16.
M. -J.
Ni
,
S.
Komori
, and
N. B.
Morley
, “
Direct simulation of falling droplet in a closed channel
,”
Int. J. Heat Mass Transfer
49
,
366
(
2006
).
17.
S.
Quan
and
D. P.
Schmidt
, “
Direct numerical study of a liquid droplet impulsively accelerated by gaseous flow
,”
Phys. Fluids
18
,
102103
(
2006
).
18.
A. R.
Wadhwa
,
V.
Magi
, and
J.
Abraham
, “
Transient deformation and drag of decelerating drops in axisymmetric flows
,”
Phys. Fluids
19
,
113301
(
2007
).
19.
M.
Ohta
,
Y.
Akama
,
Y.
Yoshida
, and
M.
Sussman
, “
Three-dimensional simulation of the evolution process to vortex rings of falling drops in an immiscible viscous liquid
,”
J. Chem. Eng. Jpn.
42
,
648
(
2009
).
20.
D.
Bhaga
and
M.
Weber
, “
Bubbles in viscous liquids: Shapes, wakes and velocities
,”
J. Fluid Mech.
105
,
61
(
1981
).
21.
M.
Sussman
and
E.
Puckett
, “
A coupled level set and volume of fluid method for computing 3D and axisymmetric incompressible two-phase flows
,”
J. Comput. Phys.
162
,
301
(
2000
).
22.
M.
Sussman
, “
A second order coupled levelset and volume of fluid method for computing growth and collapse of vapor bubbles
,”
J. Comput. Phys.
187
,
110
(
2003
).
23.
M.
Sussman
,
K.
Smith
,
M.
Hussaini
,
M.
Ohta
, and
R.
Zhi-Wei
, “
A sharp interface method for incompressible two-phase flows
,”
J. Comput. Phys.
221
,
469
(
2007
).
24.
M.
Kang
,
R.
Fedkiw
, and
X. -D.
Liu
, “
A boundary condition capturing method for multiphase incompressible flow
,”
J. Sci. Comput.
15
,
323
(
2000
).
25.
M.
Sussman
,
P.
Smereka
, and
S.
Osher
, “
A level set approach for computing solutions to incompressible two-phase flow
,”
J. Comput. Phys.
114
,
146
(
1994
).
26.
C. W.
Hirt
and
B. D.
Nichols
, “
Volume of fluid (VOF) method for the dynamics of free boundaries
,”
J. Comput. Phys.
39
,
201
(
1981
).
27.
E. G.
Puckett
,
A. S.
Almgren
,
J. B.
Bell
,
D. L.
Marcus
, and
W. G.
Rider
, “
A high-order projection method for tracking fluid interfaces in variable density incompressible flows
,”
J. Comput. Phys.
130
,
269
(
1997
).
28.
J. R.
Grace
,
T.
Wairegi
, and
T. H.
Nguyen
, “
Shapes and velocities of single drops and bubbles moving freely through immiscible liquids
,”
Trans. Inst. Chem. Eng.
54
,
167
(
1976
).
29.
J.
Hnat
and
J.
Buckmaster
, “
Spherical cap bubbles and skirt formation
,”
Phys. Fluids
19
,
182
(
1976
).
30.
G.
Ryskin
and
L.
Leal
, “
Numerical solution of free boundary problems in fluid mechanics. Part 2. Buoyancy-driven motion of a gas bubble through a quiescent liquid
,”
J. Fluid Mech.
148
,
19
(
1984
).
31.
A.
Johnson
and
A.
Hamielec
, “
Mass transfer inside drops
,”
AIChE J.
6
,
145
(
1960
).
32.
M.
Ohta
,
T.
Imura
,
Y.
Yoshida
, and
M.
Sussman
, “
A computational study of the effect of initial bubble conditions on the motion of a gas bubble rising in viscous liquids
,”
Int. J. Multiphase Flow
31
,
223
(
2005
).
33.
M.
Ohta
,
S.
Haranaka
,
Y.
Yoshida
, and
M.
Sussman
, “
Three-dimensional numerical simulations of the effect of initial bubble conditions on the motion of a bubble rising in viscous liquids
,”
J. Chem. Eng. Jpn.
38
,
878
(
2005
).
34.
T.
Bonometti
and
J.
Magnaudet
, “
Transition from spherical cap to toroidal bubbles
,”
Phys. Fluids
18
,
052102
(
2006
).
35.
M.
Sussman
,
A.
Almgren
,
J.
Bell
,
P.
Colella
,
L.
Howell
, and
M.
Welcome
, “
An adaptive level set approach for incompressible two-phase flows
,”
J. Comput. Phys.
148
,
81
(
1999
).
36.
J. U.
Brackbill
,
D. B.
Kothe
, and
C.
Zemach
, “
A continuum method for modeling surface tension
,”
J. Comput. Phys.
100
,
335
(
1992
).
37.
S. O.
Unverdi
and
G.
Tryggvason
, “
A front-tracking method for viscous, incompressible, multi-fluid flows
,”
J. Comput. Phys.
100
,
25
(
1992
).
38.
J.
Hadamard
, “
Mouvement permanent lent d’une sphere liquide et visqueuse dans un liquide visqueux
,”
C. R. Acad. Sci. Paris
152
,
1735
(
1911
).
39.
W.
Rybczynski
, “
Über die fortschreitende bewegung einer flüssigen Kugel in einem Medium
,”
Bull. Acad. Sci. Cracovia Ser. A
1
,
40
(
1911
).
You do not currently have access to this content.