We study the impact of a fluid drop onto a planar solid surface at high speed so that at impact, kinetic energy dominates over surface energy and inertia dominates over viscous effects. As the drop spreads, it deforms into a thin film, whose thickness is limited by the growth of a viscous boundary layer near the solid wall. Owing to surface tension, the edge of the film retracts relative to the flow in the film and fluid collects into a toroidal rim bounding the film. Using mass and momentum conservation, we construct a model for the radius of the deposit as a function of time. At each stage, we perform detailed comparisons between theory and numerical simulations of the Navier–Stokes equation.

1.
V.
Bergeron
,
D.
Bonn
,
J. -Y.
Martin
, and
L.
Vovelle
, “
Controlling droplet deposition with polymer additives
,”
Nature (London)
405
,
772
(
2000
).
2.
M.
Pasandideh-Fard
,
Y. M.
Qiao
,
S.
Chandra
, and
J.
Mostaghime
, “
Capillary effects during droplet impact on a solid surface
,”
Phys. Fluids
8
,
650
(
1996
).
3.
H. -Y.
Kim
,
Z. C.
Feng
, and
J. -H.
Chun
, “
Instability of a liquid jet emerging from a droplet upon collision with a solid surface
,”
Phys. Fluids
12
,
531
(
2000
).
4.
M.
Bussmann
,
S.
Chandra
, and
J.
Mostaghimi
, “
Modeling the splash of a drop impacting on a solid surface
,”
Phys. Fluids
12
,
3121
(
2000
).
5.
Y.
Renardy
,
S.
Popinet
,
L.
Duchemin
,
M.
Renardy
,
S.
Zaleski
,
C.
Josserand
,
M. A.
Drumright-Clarke
,
D.
Richard
,
C.
Clanet
, and
D.
Quéré
, “
Pyramidal and toroidal water drops after impact on a solid surface
,”
J. Fluid Mech.
484
,
69
(
2003
).
6.
D.
Richard
and
D.
Quéré
, “
Bouncing water drops
,”
Europhys. Lett.
50
,
769
(
2000
).
7.
C.
Clanet
,
C.
Béguin
,
D.
Richard
, and
D.
Quéré
, “
Maximal deformation of an impacting drop
,”
J. Fluid Mech.
517
,
199
(
2004
).
8.
R.
Rioboo
,
M.
Marengo
, and
C.
Tropea
, “
Time evolution of liquid drop impact onto solid, dry surfaces
,”
Exp. Fluids
33
,
112
(
2002
).
9.
I. V.
Roisman
,
R.
Rioboo
, and
C.
Tropea
, “
Normal impact of a liquid drop on a dry surface: Model for spreading and receding
,”
Proc. R. Soc. London, Ser. A
458
,
1411
(
2002
).
10.
D.
Bartolo
,
C.
Josserand
, and
D.
Bonn
, “
Singular jets and bubbles in drop impact
,”
Phys. Rev. Lett.
96
,
124501
(
2006
).
11.
D.
Bonn
,
J.
Eggers
,
J.
Indekeu
,
J.
Meunier
, and
E.
Rolley
, “
Wetting and spreading
,”
Rev. Mod. Phys.
81
,
739
(
2009
).
12.
L.
Xu
,
W. W.
Zhang
, and
S. R.
Nagel
, “
Drop splashing on a dry smooth surface
,”
Phys. Rev. Lett.
94
,
184505
(
2005
).
13.
S. T.
Thoroddsen
,
T. G.
Etoh
,
K.
Takehara
,
N.
Ootsuka
, and
A.
Hatsuki
, “
The air bubble entrapped under a drop impacting on a solid surface
,”
J. Fluid Mech.
545
,
203
(
2005
).
14.
A. A.
Korobkin
,
A. S.
Ellis
, and
F. T.
Smith
, “
Trapping of air in impact between a body and shallow water
,”
J. Fluid Mech.
611
,
365
(
2008
).
15.
S.
Mandre
,
M.
Mani
, and
M. P.
Brenner
, “
Precursors to splashing of liquid droplets on a solid surface
,”
Phys. Rev. Lett.
102
,
134502
(
2009
).
16.
A. F.
Spilhaus
, “
Drop size, intensity, and radar echo of rain
,”
J. Atmos. Sci.
5
,
161
(
1948
).
17.
I. V.
Roisman
, “
Inertia dominated drop collisions. II. An analytical solution of the Navier–Stokes equations for a spreading viscous film
,”
Phys. Fluids
21
,
052104
(
2009
).
18.
S.
Popinet
and
S.
Zaleski
, “
A front-tracking algorithm for accurate representation of surface tension
,”
Int. J. Numer. Methods Fluids
30
,
775
(
1999
).
19.
L.
Mahadevan
and
Y.
Pomeau
, “
Rolling droplets
,”
Phys. Fluids
11
,
2449
(
1999
).
20.
H.
Wagner
, “
Über Stoß- und Gleitvorgänge an der Oberfläche von Flüssigkeiten
,”
Z. Angew. Math. Mech.
12
,
193
(
1932
).
21.
M. J.
Cooker
and
D. H.
Peregrine
, “
Pressure-impulse theory for liquid impact problems
,”
J. Fluid Mech.
297
,
193
(
1995
).
22.
C.
Josserand
and
S.
Zaleski
, “
Droplet splashing on a thin liquid film
,”
Phys. Fluids
15
,
1650
(
2003
).
23.
A. L.
Yarin
and
D. A.
Weiss
, “
Impact of drops on solid-surfaces—Self-similar capillary waves, and splashing as a new-type of kinematic discontinuity
,”
J. Fluid Mech.
283
,
141
(
1995
).
24.
K. -T.
Yang
, “
Unsteady laminar boundary layers in an incompressible stagnation flow
,”
Trans. ASME, J. Appl. Mech.
25
,
421
(
1958
).
25.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
(
Pergamon
,
Oxford
,
1984
).
26.
L.
Prandtl
, in
Gesammelte Abhandlungen
, edited by
W.
Tollmien
,
H.
Schlichting
, and
H.
Görtler
(
Springer
,
Berlin
,
1961
), Vol.
II
, pp.
575
584
.
27.
L.
Rosenhead
,
Laminar Boundary Layers
(
Oxford University Press
,
London
,
1963
).
28.
G. I.
Taylor
, “
The dynamics of thin sheets of fluid III. Disintegration of fluid sheets
,”
Proc. R. Soc. London, Ser. A
253
,
313
(
1959
).
29.
F. E. C.
Culick
, “
Comments on a ruptured soap film
,”
J. Appl. Phys.
31
,
1128
(
1960
).
30.
R. D.
Schroll
,
C.
Josserand
,
S.
Zaleski
, and
W. W.
Zhang
, “
Impact of a viscous liquid drop
,”
Phys. Rev. Lett.
104
,
034504
(
2010
).
31.
A. I.
Fedorchenko
,
A. -B.
Wang
, and
Y. -H.
Wang
, “
Effect of capillary and viscous forces on spreading of a liquid drop impinging on a solid surface
,”
Phys. Fluids
17
,
093104
(
2005
).
32.
T.
Bennett
and
D.
Poulikakos
, “
Splat-quench solidification: Estimating the maximum spreading of a droplet impacting a solid surface
,”
J. Mater. Sci.
28
,
963
(
1993
).
33.
Š.
Šikalo
,
H. D.
Wilhelm
,
I. V.
Roisman
,
S.
Jakirlic
, and
C.
Tropea
, “
Dynamic contact angle of spreading droplets: Experiments and simulations
,”
Phys. Fluids
17
,
062103
(
2005
).
34.
M.
Pasandideh-Fard
,
S.
Chandra
, and
J.
Mostaghimi
, “
A three-dimensional model of droplet impact and solidification
,”
Int. J. Heat Mass Transfer
45
,
2229
(
2002
).
35.
D.
Bartolo
,
C.
Josserand
, and
D.
Bonn
, “
Retraction dynamics of aqueous drops upon impact on non-wetting surfaces
,”
J. Fluid Mech.
545
,
329
(
2005
).
36.
P. -G.
de Gennes
, “
Wetting: Statics and dynamics
,”
Rev. Mod. Phys.
57
,
827
(
1985
).
You do not currently have access to this content.