The ability to calculate flows generated by oscillating cylinders immersed in fluid is a cornerstone in micro- and nanodevice development. In this article, we present a detailed theoretical analysis of the hydrodynamic load experienced by an oscillating rigid cylinder, of arbitrary rectangular cross section, that is immersed in an unbounded viscous fluid. We also consider the formal limit of inviscid flow for which exact analytical and asymptotic solutions are derived. Due to its practical importance in application to the atomic force microscope and nanoelectromechanical systems, we conduct a detailed assessment of the dependence of this load on the cylinder thickness-to-width ratio. We also assess the validity and accuracy of the widely used infinitely-thin blade approximation. For thin rectangular cylinders of finite thickness, this approximation is found to be excellent for out-of-plane motion, whereas for in-plane oscillations it can exhibit significant error. A database of accurate numerical results for the hydrodynamic load as a function of the thickness-to-width ratio and normalized frequency is also presented, which is expected to be of value in practical application and numerical benchmarking.

1.
A. N.
Cleland
,
Foundations of Nanomechanics
(
Springer-Verlag
,
Berlin
,
2002
).
2.
H. G.
Craighead
, “
Nanoelectromechanical systems
,”
Science
290
,
1532
(
2000
).
3.
Y. T.
Yang
,
C.
Callegari
,
X. L.
Feng
,
K. L.
Ekinci
, and
M. L.
Roukes
, “
Zeptogram-scale nanomechanical mass sensing
,”
Nano Lett.
6
,
583
(
2006
).
4.
T. P.
Burg
,
M.
Godin
,
S. M.
Knudsen
,
W.
Shen
,
G.
Carlson
,
J. S.
Foster
,
K.
Babcock
, and
S. R.
Manalis
, “
Weighing of biomolecules, single cells and single nanoparticles in fluid
,”
Nature (London)
446
,
1066
(
2007
).
5.
T. P.
Burg
,
J. E.
Sader
, and
S. R.
Manalis
, “
Nonmonotonic energy dissipation in microfluidic resonators
,”
Phys. Rev. Lett.
102
,
228103
(
2009
).
6.
S.
Boskovic
,
J. W. M.
Chon
,
P.
Mulvaney
, and
J. E.
Sader
, “
Rheological measurements using microcantilevers
,”
J. Rheol.
46
,
891
(
2002
).
7.
G.
Binnig
,
C. F.
Quate
, and
Ch.
Gerber
, “
Atomic force microscope
,”
Phys. Rev. Lett.
56
,
930
(
1986
).
8.
F. J.
Giessibl
, “
Advances in atomic force microscopy
,”
Rev. Mod. Phys.
75
,
949
(
2003
).
9.
S.
Basak
,
A.
Raman
, and
S. V.
Garimella
, “
Hydrodynamic loading of microcantilevers vibrating in viscous fluids
,”
J. Appl. Phys.
99
,
114906
(
2006
).
10.
R. J.
Clarke
,
S. M.
Cox
,
P. M.
Williams
, and
O. E.
Jensen
, “
The drag on a microcantilever oscillating near a wall
,”
J. Fluid Mech.
545
,
397
(
2005
).
11.
C. P.
Green
and
J. E.
Sader
, “
Frequency response of cantilever beams immersed in viscous fluids near a solid surface with applications to the atomic force microscope
,”
J. Appl. Phys.
98
,
114913
(
2005
).
12.
T.
Naik
,
E. K.
Longmire
, and
S. C.
Mantell
, “
Dynamic response of a cantilever in liquid near a solid wall
,”
Sens. Actuators, A
102
,
240
(
2003
).
13.
M. R.
Paul
and
M. C.
Cross
, “
Stochastic dynamics of nanoscale mechanical oscillators immersed in a viscous fluid
,”
Phys. Rev. Lett.
92
,
235501
(
2004
).
14.
J. E.
Sader
, “
Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope
,”
J. Appl. Phys.
84
,
64
(
1998
).
15.
C. A.
Van Eysden
and
J. E.
Sader
, “
Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope: Arbitrary mode order
,”
J. Appl. Phys.
101
,
044908
(
2007
).
16.
C. A.
Van Eysden
and
J. E.
Sader
, “
Frequency response of cantilever beams immersed in compressible fluids with applications to the atomic force microscope
,”
J. Appl. Phys.
106
,
094904
(
2009
).
17.
J. W. M.
Chon
,
P.
Mulvaney
, and
J. E.
Sader
, “
Experimental validation of theoretical models for the frequency response of atomic force microscope cantilever beams immersed in fluids
,”
J. Appl. Phys.
87
,
3978
(
2000
).
18.
C. P.
Green
and
J. E.
Sader
, “
Small amplitude oscillations of a thin beam immersed in a viscous fluid near a solid surface
,”
Phys. Fluids
17
,
073102
(
2005
).
19.
S.
Basak
and
A.
Raman
, “
Hydrodynamic coupling between micromechanical beams oscillating in viscous fluids
,”
Phys. Fluids
19
,
017105
(
2007
).
20.
I.
Bargatin
,
E. B.
Myers
,
J.
Arlett
,
B.
Gudlewski
, and
M. L.
Roukes
, “
Sensitive detection of nanomechanical motion using piezoresistive signal downmixing
,”
Appl. Phys. Lett.
86
,
133109
(
2005
).
21.
I.
Bargatin
,
I.
Kozinsky
, and
M. L.
Roukes
, “
Efficient electrothermal actuation of multiple modes of high-frequency nanoelectromechanical resonators
,”
Appl. Phys. Lett.
90
,
093116
(
2007
).
22.
I.
Kozinsky
,
H. W. Ch.
Postma
,
I.
Bargatin
, and
M. L.
Roukes
, “
Tuning nonlinearity, dynamic range, and frequency of nanomechanical resonators
,”
Appl. Phys. Lett.
88
,
253101
(
2006
).
23.
O.
Svitelskiy
,
V.
Sauer
,
N.
Liu
,
K. -M.
Cheng
,
E.
Finley
,
M. R.
Freeman
, and
W. K.
Hiebert
, “
Pressurized fluid damping of nanoelectromechanical systems
,”
Phys. Rev. Lett.
103
,
244501
(
2009
).
24.
E. O.
Tuck
, “
Calculation of unsteady flows due to small motions of cylinders in a viscous fluid
,”
J. Eng. Math.
3
,
29
(
1969
).
25.
C. A.
Van Eysden
and
J. E.
Sader
, “
Small amplitude oscillations of a flexible thin blade in a viscous fluid: Exact analytical solution
,”
Phys. Fluids
18
,
123102
(
2006
).
26.
R. W.
Hornbeck
,
Numerical Methods
(
Prentice-Hall
,
Englewood Cliffs, NJ
,
1975
).
27.
R. V.
Churchill
,
Complex Variables and Applications
(
McGraw-Hill
,
New York
,
1960
).
28.
P. R.
Payne
, “
The virtual mass of a rectangular flat-plate of finite aspect ratio
,”
Ocean Eng.
8
,
541
(
1981
).
29.
P. R.
Payne
, “
A unification in the added mass theory of planing
,”
Ocean Eng.
19
,
39
(
1992
).
30.
Y. -T.
Yu
, “
Virtual masses of rectangular plates and parallelepipeds in water
,”
J. Appl. Phys.
16
,
724
(
1945
).
31.
J. E.
Sader
,
J. W. M.
Chon
, and
P.
Mulvaney
, “
Calibration of rectangular atomic force microscope cantilevers
,”
Rev. Sci. Instrum.
70
,
3967
(
1999
).
32.
C. P.
Green
,
H.
Lioe
,
J. P.
Cleveland
,
R.
Proksch
,
P.
Mulvaney
, and
J. E.
Sader
, “
Normal and torsional spring constants of atomic force microscope cantilevers
,”
Rev. Sci. Instrum.
75
,
1988
(
2004
).
33.
Asylum Research, 6310 Hollister Ave., Santa Barbara, CA 93117, www.asylumresearch.com.
34.
MikroMasch, Akadeemia tee 21, Em 12618 Tallinn, Estonia, www.spmtips.com.
35.
Novascan Technologies, Inc., 131 Main Street, Ames, IA 50010, www.novascan.com.
36.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions
(
Dover
,
New York
,
1972
).
37.
G. K.
Batchelor
,
An Introduction to Fluid Dynamics
(
Cambridge University Press
,
Cambridge
,
1974
).
38.
A. K.
Naik
,
M. S.
Hanay
,
W. K.
Hiebert
,
X. L.
Feng
, and
M. L.
Roukes
, “
Towards single-molecule nanomechanical mass spectrometry
,”
Nat. Nanotechnol.
4
,
445
(
2009
).
39.
The length scale convention used in the viscous case is desirable, since it eliminates the singularity and yields a constant value for the hydrodynamic function as A.
You do not currently have access to this content.