Electrified liquid jets subjected to electrical destabilizing mechanisms often deform asymmetrically, creating an uncontrollable random motion that prevents the formation of uniform drops or organized microstructures. Employing a magnetic field is a potentially effective method of inhibiting the onset of unstable motion. This paper develops a theoretical model to investigate the effect of an axial magnetic field on the instability of a charged liquid jet. To demonstrate the stabilizing ability of this approach, this study uses temporal linear stability analysis to manifest the magnetic effect in various parameter domains including the Rayleigh regime, the atomization zone, and the bending instability for a viscous jet. Results show that the magnetic force induced by the motion of charged surface is insignificant in comparison with the electric force and does not have effect on the instability of a dielectric liquid jet. However, for a liquid with high electrical conductivity, the Lorentz force induced by a conducting current becomes significant, suppressing destabilizing mechanisms and substantially improving jet stability. In the atomization zone, the effect of magnetic inhibition is relatively limited because the imposed axial magnetic field does not affect long-wave nonaxisymmetric disturbances.

1.
Y.
Dzenis
, “
Spinning continuous fibers for nanotechnology
,”
Science
304
,
1917
(
2004
).
2.
J.
Park
,
M.
Hardy
,
S. J.
Kang
,
K.
Barton
,
K.
Adair
,
D. K.
Mukhopadhyay
,
C. Y.
Lee
,
M. S.
Strano
,
A. G.
Alleyne
,
J. G.
Georgiadis
,
P. M.
Ferreira
, and
J. A.
Rogers
, “
High-resolution electrohydrodynamic jet printing
,”
Nature Mater.
6
,
782
(
2007
).
3.
R.
Dersch
,
M.
Graeser
,
A.
Greiner
, and
J. H.
Wendorff
, “
Electrospinning of nanofibres: Towards new techniques, functions, and applications
,”
Aust. J. Chem.
60
,
719
(
2007
).
4.
I. G.
Loscertales
,
A.
Barrero
,
I.
Guerrero
,
R.
Cortijo
,
M.
Marquez
, and
A. M.
Gañán-Calvo
, “
Micro/nano encapsulation via electrified coaxial liquid jets
,”
Science
295
,
1695
(
2002
).
5.
A. S.
Utada
,
E.
Lorenceau
,
D. R.
Link
,
P. D.
Kaplan
,
H. A.
Stone
, and
D. A.
Weitz
, “
Monodisperse double emulsions generated from a microcapillary device
,”
Science
308
,
537
(
2005
).
6.
M.
Cloupeau
and
B.
Prunet-Foch
, “
Electrostatic spraying of liquids in cone-jet mode
,”
J. Electrost.
22
,
135
(
1989
).
7.
D. H.
Reneker
and
A. L.
Yarin
, “
Electrospinning jets and polymer nanofibers
,”
Polymer
49
,
2387
(
2008
).
8.
J. M.
Deitzel
,
J. D.
Kleinmeyer
,
J. K.
Hirvonen
, and
N. C.
Beck Tan
, “
Controlled deposition of electrospun poly(ethylene oxide) fibers
,”
Polymer
42
,
8163
(
2001
).
9.
G. H.
Kim
,
Y. S.
Cho
, and
W. D.
Kim
, “
Stability analysis for multi-jets electrospinning process modified with a cylindrical electrode
,”
Eur. Polym. J.
42
,
2031
(
2006
).
10.
A.
Varesano
,
R. A.
Carletto
, and
G.
Mazzuchetti
, “
Experimental investigations on the multi-jet electrospinning process
,”
J. Mater. Process. Technol.
209
,
5178
(
2009
).
11.
Y.
Wu
,
J. Y.
Yu
,
J. H.
He
, and
Y. Q.
Wan
, “
Controlling stability of the electrospun fiber by magnetic field
,”
Chaos, Solitons Fractals
32
,
5
(
2007
).
12.
D. Y.
Yang
,
B.
Lu
,
Y.
Zhao
, and
X. Y.
Jiang
, “
Fabrication of aligned fibrous arrays by magnetic electrospinning
,”
Adv. Mater. (Weinheim, Ger.)
19
,
3702
(
2007
).
13.
D. Y.
Yang
,
J.
Zhang
,
J.
Zhang
, and
J.
Nie
, “
Aligned electrospun nanofibers induced by magnetic field
,”
J. Appl. Polym. Sci.
110
,
3368
(
2008
).
14.
J. H.
Yu
,
S. V.
Fridrikh
, and
G. C.
Rutledge
, “
The role of elasticity in the formation of electrospun fibers
,”
Polymer
47
,
4789
(
2006
).
15.
C. P.
Carroll
and
Y. L.
Joo
, “
Axisymmetric instabilities of electrically driven viscoelastic jets
,”
J. Non-Newtonian Fluid Mech.
153
,
130
(
2008
).
16.
Z.
Liu
and
Z.
Liu
, “
Linear analysis of three-dimensional instability of non-Newtonian liquid jets
,”
J. Fluid Mech.
559
,
451
(
2006
).
17.
M. M.
Hohman
,
M.
Shin
,
G.
Rutledge
, and
M. P.
Brenner
, “
Electrospinning and electrically forced jets. I. Stability theory
,”
Phys. Fluids
13
,
2201
(
2001
).
18.
G. S.
Dulikravich
and
S. R.
Lynn
, “
Unified electro-magneto-fluid dynamics (EMFD): A survey of mathematical models
,”
Int. J. Non-linear Mech.
32
,
923
(
1997
).
19.
J. R.
Melcher
,
Continuum Electromechanics
(
MIT Press
,
London
,
1981
).
20.
J. R.
Melcher
and
G. I.
Taylor
, “
Electrohydrodynamics: A review of the role of interfacial shear stresses
,”
Annu. Rev. Fluid Mech.
1
,
111
(
1969
).
21.
D. A.
Saville
, “
Electrohydrodynamics: The Taylor–Melcher leaky dielectric model
,”
Annu. Rev. Fluid Mech.
29
,
27
(
1997
).
22.
R. E.
Rosensweig
,
Ferrohydrodynamics
(
Cambridge University Press
,
New York
,
1985
).
23.
S. K.
Malik
and
M.
Singh
, “
Stability of a magnetic fluid jet
,”
Int. J. Eng. Sci.
29
,
1493
(
1991
).
24.
D. K.
Cheng
,
Field and Wave Electromagnetics
, 2nd ed. (
Addison-Wesley
,
Boston, MA
,
1989
).
25.
D. A.
Saville
, “
Electrohydrodynamic stability: Fluid cylinders in longitudinal electric fields
,”
Phys. Fluids
13
,
2987
(
1970
).
26.
D. A.
Saville
, “
Electrohydrodynamic stability: Effects of charge relaxation at the interface of a liquid jet
,”
J. Fluid Mech.
48
,
815
(
1971
).
27.
D. A.
Saville
, “
Stability of electrically charged viscous cylinders
,”
Phys. Fluids
14
,
1095
(
1971
).
28.
J. M.
López-Herrera
,
P.
Riesco-Chueca
, and
A. M.
Gañán-Calvo
, “
Linear stability analysis of axisymmetric perturbations in imperfectly conducting liquid jets
,”
Phys. Fluids
17
,
034106
(
2005
).
29.
J. P.
Boyd
,
Chebyshev and Fourier Spectral Methods
(
Springer
,
New York
,
1989
).
30.
D. H.
Reneker
,
A. L.
Yarin
,
H.
Fong
, and
S.
Koombhongse
, “
Bending instability of electrically charged liquid jets of polymer solutions in electrospinning
,”
J. Appl. Phys.
87
,
4531
(
2000
).
31.
A. C.
Ruo
,
M. H.
Chang
, and
F.
Chen
, “
On the nonaxisymmetric instability of round liquid jets
,”
Phys. Fluids
20
,
062105
(
2008
).
You do not currently have access to this content.